+高级检索
基于深度自监督学习的可微分半色调框架
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


A Differentiable Halftoning Framework Based on Deep Self-supervised Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对当前数字半色调算法处理速度慢以及半色调效果不佳的局限性,提出一种基于数据驱动的半色调框架.通过引入Gumbel-Softmax重参数化策略解决半色调离散选择带来的不可微分问题,实现了网络反向传播过程中的梯度无偏估计.为进一步强化半色调图像的效果,设计出一种新型蓝噪声损失函数,对半色调网点的分布予以优化.同时,提出区域置信度聚合模块,通过结合像素的空间相关性,使网络在训练过程中更加注重像素之间的交互信息.基于以上策略,通过优化半色调质量评估的期望值,构建了一个不需要标签引导的自监督可微分半色调处理框架.实验结果表明,所提出的方法不需要图像标签,能够在保持较高处理速度和较低参数复杂度的前提下,生成高质量的半色调图像,有效保留图像的局部结构信息和纹理细节.并且,该框架可灵活扩展至多级半色调处理,以适应多级打印喷头的需求.

    Abstract:

    To address the limitations of current digital halftoning algorithms, such as slow processing speed and suboptimal halftoning effects, a data-driven halftoning framework is proposed. By introducing the Gumbel-Softmax reparameterization strategy, the non-differentiability issue caused by discrete halftone selection is resolved, enabling unbiased gradient estimation during network backpropagation. To further enhance the halftoning effects, a novel blue noise loss function is designed to optimize the distribution of halftone dots. Additionally, a Patch-wise Confidence Aggregation module is introduced to incorporate spatial correlations between pixels, allowing the network to focus more on pixel interactions during training. Based on these strategies, a label-free, self-supervised, differentiable halftoning framework is constructed by optimizing the expected value of the halftone quality metric. Experimental results demonstrate that the proposed method, without requiring image labels, can generate high-quality halftone images and maintain high processing speed and low parameter complexity, effectively preserving local structural information and texture details. Moreover, this framework can be flexibly extended to multi-level halftoning to accommodate the requirements of multi-level printheads.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

刘登峰 ,朱佳伟 ,徐昊 ,杜晓凯 ,柴志雷 ?.基于深度自监督学习的可微分半色调框架[J].湖南大学学报:自然科学版,2025,52(8):23~32

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-29
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭