+高级检索
基于双重注意力融合的三维目标检测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


A 3D Object Detection Method Based on Dual Attention Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对Voxel-RCNN算法在检测远处小目标以及受到遮挡的目标时检测精度不足的问题,提出了一种改进的方法,命名为CS-Voxel-RCNN.首先,通过引入随机顺序、随机丢弃和随机噪声三项数据增强方法,丰富了训练样本的多样性,从而增强了模型的鲁棒性.其次,通过在2D骨干网络中集成CBAM模块,运用通道注意力机制和空间注意力机制,对多尺度特征进行更为细致的处理,优化了特征融合效果.最后,通过新增DIoU损失分支,对原损失函数进行改进,着重强调目标边界框之间的距离信息,从而提高了目标边界框回归任务的准确性.在KITTI数据集上与一些经典的3D目标检测算法进行对比实验.结果表明,新提出的算法对比原Voxel-RCNN算法,在骑车者类的简单和困难级别上分别提升了2.91个百分点和0.87个百分点,并通过消融实验验证了各改进模块的有效性,这一系列改进方法在提高三维目标检测在现实场景中的实用性和准确性方面取得了积极的成果.

    Abstract:

    An improved method called CS-Voxel-RCNN is proposed to address the issue of insufficient detection accuracy of Voxel-RCNN algorithm in detecting small distant targets and occluded targets. Firstly, by introducing three data augmentation methods: random order, random dropout, and random noise, the diversity of training samples is enriched, thereby enhancing the robustness of the model. Secondly, by integrating CBAM in the 2D backbone network and utilizing channel attention mechanism and spatial attention mechanism, multi-scale features are processed in more detail, optimizing the feature fusion effect. Finally, by adding a DIoU loss branch, the original loss function is improved, emphasizing the distance information between the target bounding boxes, thereby improving the accuracy of the target bounding box regression task. Comparative experiments with some classic 3D object detection algorithms on the KITTI dataset are conducted. The results show that the newly proposed algorithm has significantly improved performance, compared with the original Voxel RCNN algorithm, with improvements of 2.91 percentage and 0.87 percentage for pedestrians and cyclists, respectively. The effectiveness of each improvement module is verified through ablation experiments. This series of improvement methods achieve positive results in improving the practicality and accuracy of 3D object detection in real scenes.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

雷志勇 ?.基于双重注意力融合的三维目标检测方法[J].湖南大学学报:自然科学版,2025,52(8):80~91

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-29
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭