+高级检索
基于机器学习的功能覆盖率预测算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Functional Coverage Prediction Algorithm Based on Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    芯片规模的扩大及功能的不断加强,使得芯片验证难度呈几何级数递增.对于多组合激励的功能覆盖情况,传统通用做法是依照其不同使用场景,以分片或切片形式进行统计.此类方法操作简单,但难以在随机测试下对各个配置的组合情况进行完整覆盖分析.针对该问题,提出了一种基于机器学习算法进行覆盖率快速收敛且通用性强的验证方法.该方法将各个配置激励按权重进行分解处理,对功能覆盖中的关键交叉仓进行观测,利用功能点分析不消耗仿真时间的特性,对数据集进行收集并训练,通过实际测试调整,实现了一种改进型的网络结构,可对各种激励组合情况进行覆盖率预测,并可挑选指定覆盖阈值的激励输入.仿真结果表明,与随机情况相比,该方法可显著降低仿真时间,并有效减少仿真资源占用;与其他网络结构相比,该网络收敛更为迅速,并可达到更高的预测精度.

    Abstract:

    With the expansion of chip scale and the strengthening of function, the difficulty of verifying chips is increasing geometrically. At present, for the functional coverage of multiple combination incentive cases, the industry’s common practice is to calculate it in the form of fragments or slices according to different use scenarios. This method is easy to operate, but it is difficult to perform a complete coverage analysis of the combination of various configurations under random testing. To solve this problem, a verification method based on a machine learning algorithm for fast convergence and strong universality of coverage is proposed. In this method, each configuration incentive is decomposed according to the weight, and the key cross bins in the function coverage are observed. The data set is collected and trained by the feature that the function point analysis does not consume the simulation time. Through the actual test adjustment, an improved network structure is realized, which can predict the coverage rate of various incentive combinations, and also can pick an incentive input that specifies a coverage threshold. Simulation results show that compared with the random case, the proposed method can significantly reduce the simulation time and effectively reduce the simulation resource occupation. Compared with other network structures, the proposed network achieves faster convergence and higher prediction accuracy.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

刘光宇 ,王艺洋 ,林子明 ,李志强 ?,梁利平 .基于机器学习的功能覆盖率预测算法[J].湖南大学学报:自然科学版,2025,52(8):122~129

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-29
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭