+高级检索
SαS分布噪声下基于特征值调和平均的稳健频谱感知算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


A Robust Spectrum Sensing Algorithm Based on Eigenvalue Harmonic Mean under SαS Distribution Noise
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对SαS分布噪声提出了一种基于分数低阶预处理与特征值调和平均检测相结合的频谱感知算法,该算法以分数低阶预处理接收信号样本协方差矩阵的最大特征值与特征值调和平均之差与最小特征值之比(DMHMM)作为感知判决量.该算法在预处理阶段通过分数低阶操作降低SαS分布噪声非高斯特性的影响,在检测阶段利用极值特征值与特征值调和平均设计检测判决量,检测过程避免了对噪声参数的依赖,适应范围广.在此基础上,基于Wishart矩阵特征值几何平均的矩理论,以及高维随机矩阵中最大和最小特征值渐近分布理论,针对DMHMM频谱感知算法提出了一种有效的理论判决门限计算方法,在降低理论门限计算复杂度的同时,提高了非渐近条件下SαS分布噪声中主用户信号检测结果的可靠性.Monte-Carlo仿真结果表明,所提DMHMM频谱感知算法可以获得比半盲DMGM算法更为可靠的检测判决结果,且在检测阶段无需SαS分布噪声的相关参数;由于综合利用了分数低阶预处理后取样协方差矩阵的极值特征值以及特征值调和平均信息,能够更好地反映主用户信号的变化,使得新算法具有比MME和CHME算法更优的检测效果.

    Abstract:

    A novel spectrum sensing algorithm is proposed for environments characterized by symmetric Alpha-stable (SαS) noise, combining fractional low-order preprocessing with eigenvalue harmonic mean detection. The proposed algorithm employs the ratio of the difference between the maximum eigenvalue and the harmonic average of all eigenvalues to the minimum eigenvalue (DMHMM) as the test statistic. These eigenvalues are calculated from the sample covariance matrix of the received signal, which is preprocessed using fractional lower-order techniques. This algorithm reduces the impact of the non-Gaussian characteristics of SαS noise through fractional low-order operations in the preprocessing stage; and in the detection stage, it uses extreme eigenvalues and eigenvalue harmonic mean to design test statistic. The detection process of the proposed algorithm does not depend on SαS noise parameters and has a wide range of adaptability. On this basis, based on the moment theory of geometric mean of Wishart matrix eigenvalues and the asymptotic distribution theory of maximum and minimum eigenvalues in high-dimensional random matrices, an effective theoretical decision threshold calculation method is proposed for the proposed DMHMM algorithm. This method reduces the complexity of theoretical threshold calculation while improving the reliability of detection results of the primary user signal in SαS noise under non-asymptotic conditions. Monte Carlo simulation results show that the proposed DMHMM algorithm can obtain more reliable decision results than semi-blind DMGM algorithm, and does not require statistical parameters of SαS noise in the detection stage. Due to the comprehensive utilization of the extreme eigenvalues and the harmonic mean of all eigenvalues of the sampled covariance matrix after fractional low order preprocessing, the new algorithm can better reflect the changes in the primary user signal, resulting in high detection probabilities than the traditional MME and CHME algorithms.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

杨喜 ,周睿勇 ,雷可君 ?,张耿 ,张银行 ,曹秀英 ,王仁玮 . SαS分布噪声下基于特征值调和平均的稳健频谱感知算法[J].湖南大学学报:自然科学版,2025,52(8):172~182

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-29
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭