+高级检索
基于堆叠集成算法的软岩填方路基沉降融合预测模型研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Fusion Prediction Model of Soft Rock Embankment Subsidence Based on Stacked Generalization Integration Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在降雨入渗和交通荷载影响下,路基内部填筑软岩易发生持续的颗粒破碎、迁移及重新排列,进而引发路基产生不均匀沉降. 沉降变形是评估路基稳定性与安全性的关键指标,开展路基沉降预测是预防道路失稳或病害的重要手段. 然而,传统单一预测模型通常缺乏良好的普适性与泛化能力,难以适用于不同工况条件下的路基工程. 因此,收集并分析了18个公路和铁路软岩填方路基工程的沉降监测数据,总结归纳了波浪型、折线型以及抛物线型等多种典型沉降趋势. 在此基础上,基于Stacked Generalization(SG)集成算法,将三类不同领域内的预测模型进行组合,构建了适用于预测软岩填方路基沉降的SG融合模型. 改进后的模型避免了复杂的超参数调整过程,适合直接应用于实际工程. 并使用了Blocked K-Fold训练策略,提高模型的鲁棒性. 在实际监测样本与数据匮乏的小样本条件下,将模型预测结果与多个传统模型进行对比,结果显示,SG融合模型多项误差评价指标显著低于其他模型,针对多个工程的沉降预测精度最高,具有更高的适用性和鲁棒性. 研究成果可为软岩填方路基服役性能评价及工后维护提供理论参考与技术支撑.

    Abstract:

    Soft rock within embankments is prone to continuous particle breakage, migration, and rearrangement due to rain infiltration and traffic loads, leading to uneven subsidence. subsidence deformation is a key indicator of embankment stability and safety, making accurate prediction essential for preventing road defects and instability. However, traditional single prediction models often lack generalizability and are not suitable for varying conditions in embankment engineering. This study collected and analyzed subsidence data from 18 soft rock embankments in highways and railways, which exhibited distinct subsidence patterns, including wave-like, broken line, and parabolic trends. Based on these data, using the Stacked Generalization (SG) ensemble algorithm, an SG fusion model predicting soft rock embankment subsidence was developed combining the prediction models from three different fields. The model avoided the hyperparameter tuning process, allowing for direct application in engineering practices. Besides, a Blocked K-Fold training strategy was employed to improve robustness. In comparison with traditional models, under conditions of limited monitoring data, the SG fusion model demonstrated significantly lower error rates and higher prediction accuracy across various projects. The findings suggest that the SG model is more applicable and robust for predicting soft rock embankment subsidence. This research provides theoretical and technical support for evaluating the service performance and post-construction maintenance of soft rock embankments.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

曾铃 ,谢宇航 ,章赛泽 ?,余慧聪 ,陈镜丞 ,张红日 .基于堆叠集成算法的软岩填方路基沉降融合预测模型研究[J].湖南大学学报:自然科学版,2025,52(9):125~138

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-09
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭