+高级检索
基于EGO-CEEMDAN-VMD-BiGRU模型的短期光伏发电功率预测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Short-term Photovoltaic Power Prediction Method Based on the EGO-CEEMDAN-VMD-BiGRU Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为提高光伏发电功率的预测精度,基于参数优化的双重数据分解方法, 提出了一种EGO-CEEMDAN-VMD-BiGRU短期光伏发电功率预测模型. 首先, 基于鳗鱼-石斑鱼优化 (eel and grouper optimizer, EGO) 算法获得自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的最优参数, 对光伏数据集进行初次分解;其次,采用K均值聚类算法将模态分量聚类为高频、中频和低频三类分量, 以降低各分量之间的冗余性;再次, 采用EGO算法优化变分模态分解(variational mode decomposition, VMD)的参数, 再对高频分量进行二次分解, 以降低序列的非平稳性;最后, 采用双向门控循环单元(bidirectional gated recurrent unit, BiGRU)对两次分解得到的分量进行预测, 并累加获得最终预测结果. 基于宁夏地区某光伏电厂的数据集, 将EGO-CEEMDAN-VMD-BiGRU模型与BiGRU、VMD-BiGRU和CEEMDAN-VMD-BiGRU模型进行对比, 三种天气条件下的平均MAE分别下降了68.93%、55.84%和44.56%;RMSE分别下降了68.23%、53.38%和41.03%. 试验结果表明, 提出的光伏发电功率预测模型具有较高的精确性和稳定性, 对电力系统的安全可靠运行有一定的实际意义.

    Abstract:

    To improve the prediction accuracy of photovoltaic power, an EGO-CEEMDAN-VMD-BiGRU short-term photovoltaic power prediction model is proposed based on the dual data decomposition method of parameter optimization. Initially, the eel and grouper optimizer (EGO) algorithm is employed to determine the optimal parameters for complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), thereby performing an initial decomposition of the photovoltaic dataset. Subsequently, the K-means clustering algorithm is utilized to categorize the modal components into high-frequency, medium-frequency, and low-frequency groups, effectively reducing redundancy among the components. Then, the EGO algorithm is used to optimize the parameters of variational mode decomposition (VMD). Following this, the high-frequency component is decomposed for the second time to mitigate the non-stationarity of the sequence. Finally, bidirectional gated recurrent unit (BiGRU) is applied to predict the components derived from the two-stage decomposition process, with the final prediction result obtained through summation. Based on the dataset from a photovoltaic power plant in Ningxia, the EGO-CEEMDAN-VMD-BiGRU model was compared with the BiGRU, VMD-BiGRU, and CEEMDAN-VMD-BiGRU models. Under three distinct weather conditions, the average MAE was reduced by 68.93%, 55.84%, and 44.56%, respectively, while the RMSE was decreased by 68.23%, 53.38%, and 41.03%, respectively. The experimental results demonstrate that the proposed photovoltaic power prediction model exhibits high accuracy and stability, thereby holding practical significance for ensuring the safe and reliable operation of power systems.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

王玲芝 ?,李晨阳 ,李程.基于EGO-CEEMDAN-VMD-BiGRU模型的短期光伏发电功率预测方法[J].湖南大学学报:自然科学版,2025,52(12):100~112

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-06
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭