+高级检索
基于改进RT-DETR的草莓病害检测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Strawberry Disease Detection Method Based on Improved RT-DETR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    我国作为世界上最大的草莓生产国, 准确检测草莓病害是保障草莓品质和产量的有效手段. 针对草莓病害在复杂背景下检测精度不高及细微病害检测困难的问题, 提出了一种改进RT-DETR(real-time detection transformer)网络的草莓病害检测方法. 首先, 使用AdditiveBlock-CGLU模块对主干特征提取网络进行重构, 以增强模型在复杂背景干扰下对深层关键特征的表征能力. 其次, 提出多尺度跨层特征融合金字塔网络(multi-scale cross-layer block feature fusion pyramid network,MS-CBFPN)优化模型的特征融合部分, 使其能更有效整合不同层级信息并充分捕捉图像上下文信息, 从而提高模型对细微病害特征的检测能力. 最后, 在特征交互模块(attention-based intra-scale feature interaction,AIFI)中引入渐进式重参数化批量归一化(progressive re-parameterized batch normalization,PRepBN)结构, 通过动态调整学习率及重参数化方法, 使模型更好地适应不同训练阶段的变化, 进一步增强模型对草莓病害的检测性能. 实验结果表明, 改进模型在检测草莓病害的准确率、召回率、mAP@0.5、mAP@0.5:0.95和F1得分五项指标上分别提升了3.4、7.6、3.3、8.0和5.6个百分点, 且相对于其他模型也具有优势, 表明改进的RT-DETR模型是一种在复杂场景下有效的草莓病害检测模型.

    Abstract:

    As the world’s largest strawberry producer country, accurate detection of strawberry diseases in China is an effective measure to ensure the quality and yield of strawberries. To address the issues of low detection accuracy under complex backgrounds and difficulty in detecting subtle diseases, an improved real-time detection transformer (RT-DETR) network-based strawberry disease detection method is proposed. First, the backbone feature extraction network is reconstructed using the AdditiveBlock-CGLU module to enhance the model’s ability to represent deep critical features under complex background interference. Second, a multi-scale cross-layer block feature fusion pyramid network (MS-CBFPN) is proposed to optimize the feature fusion part of the model, enabling more effective integration of information across different layers and fully capturing the contextual information of images, thus improving the model’s ability to detect subtle disease features. Finally, a progressive re-parameterized batch normalization (PRepBN) structure is introduced into the attention-based intra-scale feature interaction (AIFI), enabling dynamic adjustment of the learning rate and re-parameterization methods so that the model can better adapt to changes at different training stages, further enhancing the model’s disease detection capability. Experimental results show that the improved model improves accuracy, recall, mAP@0.5, mAP@0.5:0.95, and F1 score by 3.4, 7.6, 3.3, 8.0, and 5.6 percentage points, respectively, and also outperforms other models, indicating that the improved RT-DETR model is an effective strawberry disease detection model in complex scenarios.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

王海瑞 ,胡灿 ,朱贵富 ?,蒋晨 .基于改进RT-DETR的草莓病害检测方法[J].湖南大学学报:自然科学版,2025,52(12):176~188

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-06
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭