+高级检索
基于机器学习的功能覆盖点均衡分布算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Equilibrium Distribution Algorithm of Function Coverage Points Based on Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    覆盖率是检验芯片验证完备性的重要指标, 尤其是功能覆盖率, 可衡量设计的功能特性是否被充分验证. 目前对于功能覆盖率的收集, 通用做法是在覆盖组中设定功能点, 将测试场景依据复杂度划分为特定数量的仓,再运行仿真确定各个仓是否被击中. 其实现相对简单, 但由于各种因素的存在,一个功能点中各个仓的命中情况往往分布极不平衡, 导致对一些场景的覆盖不够充分.针对该问题,提出了一种基于机器学习算法实现覆盖率均衡分布的验证方法,通过对神经网络进行训练,可对各种激励向量进行精确预测. 该方法针对较小及较大数目覆盖仓,分别设计了反向网络预测及正向网络实时拟合的方法, 可方便实现各个仓位的均衡命中.实验结果表明,与随机测试覆盖点命中次数极大值与极小值差异在数个量级的情况相比,小点数仓位可基本实现平均分布, 大点数仓位可将极值比缩小在1.5倍以内, 从而显著减少部分情况的验证风险.

    Abstract:

    Coverage is an important index to test the completeness of chip verification, especially functional coverage, which can measure whether the functional characteristics of the design are fully verified. At present, for the collection of function coverage, the general practice is to set function points in the coverage group, divide the test scene into a specific number of bins according to complexity, and then run the simulation to determine whether each bin is hit. Its implementation is relatively simple, but due to the existence of various factors, the hit situation of each bin in a function point is often unbalanced, resulting in insufficient coverage of some scenes. To solve this problem, a verification method based on machine learning algorithm to achieve uniform coverage distribution is proposed. By training neural networks, various excitation vectors can be accurately predicted. In this method, the reverse network prediction method and the forward network real-time fitting method are designed respectively for small and large number of covered bins, which can realize the balanced hit of each bin easily. The experimental results show that, compared with the case where the difference between the maximum and the minimum hit times of random test coverage points is several orders of magnitude, the small point bins can basically achieve the average distribution and the large point bins can reduce the extreme value ratio to less than 1.5 times, thus significantly reducing the verification risk of some cases.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

刘光宇 ,林子明 ,倪园慧 ,李志强 ?,梁利平 .基于机器学习的功能覆盖点均衡分布算法[J].湖南大学学报:自然科学版,2025,52(12):189~196

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-06
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭