+高级检索
结合多特征赋权的谱聚类水下多目标分割技术
作者:
作者单位:

1.大理大学 工程学院;2.哈尔滨工程大学 物理与光电工程学院;3.云南民族大学 电气信息工程学院

作者简介:

通讯作者:

基金项目:

国家自然科学(61761048);云南省地方本科高校基础研究联合专项资金项目[2019FH001(-066)];黑龙江省自然科学基金(LC2018026)


Underwater multi-object segmentation technology based on spectral clustering with multi-feature weighting
Author:
Affiliation:

1.School of Engineering,Dali University;2.College of Physics and Optoelectronic Engineering,Harbin Engineering University;3.School of Electrical and Information Technology,Yunnan Minzu University

Fund Project:

Natural Science Foundation of China (61761048);Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities’Association [2019FH001(-066)]; Natural Science Foundation of Heilongjiang Province ( LC2018026)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    声呐图像具有受噪声污染严重的特点,导致水下多目标分割存在精度低的问题。为此,提出一种自调整谱聚类结合熵权法进行多特征赋权的水下多目标分割技术。该技术首先通过自调整谱聚类对声呐图像的像素点进行聚类处理,使图像划分为多个独立的区域,然后根据多特征的互补性和冗余性统计每个区域的信息熵、亮度、对比度、狭长度等特征,利用熵权法对多特征进行赋权并筛选出最优的一个目标区域,再将该最优目标区域和所有区域进行多特征的相似度匹配,最后根据相似度的匹配结果使用自适应阈值迭代法自动分割出所有的目标区域。实验结果表明没有对噪声干扰区域误分割,分割出的目标区域精度更高,验证了所提方法的有效性。

    Abstract:

    Sonar image is seriously polluted by noise, which leads to the problem of low precision in underwater multi-target segmentation.Therefore, an underwater multi-object segmentation technique based on self-adjusting spectrum clustering combined with entropy weight method is proposed.The technology first by self-tuning spectral clustering of sonar image pixel clustering processing, make the image is divided into multiple independent area, and then according to the characteristics of complementarity and more sections of the redundancy of the statistical information entropy characteristics, brightness, contrast, long and narrow degree, entropy weight method is used to analyse the characteristics more empowerment and the optimal selection of a target area,Then the optimal target region is matched with all regions by multi-feature similarity. Finally, all target regions are segmented automatically by adaptive threshold iterative method according to the matching results of similarity. Experimental results show that there is not over-segmented of noise interference regions, and target regions segmented have higher accuracy, which verifies the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文
历史
  • 收稿日期: 2021-11-24
  • 最后修改日期: 2022-03-18
  • 录用日期: 2022-03-21
  • 在线发布日期: 2022-05-17
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭