+高级检索
基于Gibbs抽样的贝叶斯金融随机波动模型分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目 , 教育部新世纪优秀人才支持计划资助项目 , 教育部人文社会科学规划资助项目 ?


Bayesian Analysis of Stochastic Volatility Model Using Gibbs Sampling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    通过分析随机波动模型的统计结构,推断了SV模型似然函数的具体形式,据此构造了模型参数的共轭先验分布.利用贝叶斯定理获得了相应的模型参数后验条件分布.同时,为了获得模型参数的贝叶斯估计及其置信区间,设计了基于Gibbs抽样的MCMC数值计算程序,并利用上海综合指数和深圳成分指数数据进行了建模实证分析,解决了参数随机条件下金融随机波动时间序列建模问题,提高了模型预报精度.

    Abstract:

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

朱慧明,李素芳,虞克明,曾慧芳,林静.基于Gibbs抽样的贝叶斯金融随机波动模型分析[J].湖南大学学报:自然科学版,2008,35(12):

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭