+高级检索
管状光催化反应器降解甲醛效果及其降解模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Removal of Formaldehyde with an Annular Reactor and Its Kinetic Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对建筑环境中的挥发性有机化合物甲醛,在原有管状反应器内增设带有工艺缺口的直肋片,并在密闭循环系统中对其净化效果进行分析,又利用计算流体力学(CFD)的方法得到了反应器内部的流速和光强分布.同时,基于模型计算的方法,建立了污染物循环降解模型.结果表明: 改进后的管状反应器,反应面积增加,气体停留时间延长,平衡了传质-反应能力,反应速率提高了约1倍;增设肋片后,内壁面光强有所减弱,反应器中间段光强与流速耦合较好,而两端由于气流扰动大且光强较弱,反应速率会受影响;另外,降解模型的预测值稍高于实测值,但两者变化趋势相同,该模型能较准确的预测甲醛的反应速率.

    Abstract:

    A new annular photocatalytic reactor was designed for the removal of indoor formaldehyde. Three fins were added to the reactor and each fin had a triangular gap at one end, making this type reactor continuous and single-pass. The influence of fins on formaldehyde removal was examined in an airtight environmental chamber. The radiation and velocity fields of the reactors were simulated by using computational fluid dynamics (CFD) methods. A theoretical model for the degradation of formaldehyde in a recirculating system was proposed. When adding fins in the annular reactor, the reaction area and residence time were greatly increased, and the degradation rate was, therefore, obviously enhanced. The CFD simulation results showed that the radiation intensity on the internal surfaces of the exterior cylinder was nearly uniform except for the two ends and it decreased slightly for the reactor with fins. The velocity distribution was uniform in the first tube pass and became actually higher near the elbows. The UV intensity was weak while the velocity was large near the elbows, which had a negative effect on degradation efficiency there. The results obtained from the kinetic model were in agreement with experimental data. So the degradation behavior of formaldehyde could be predicted by using this kinetic model.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

刘鹏,郑洁,黄锋,宋雪瑞.管状光催化反应器降解甲醛效果及其降解模型[J].湖南大学学报:自然科学版,2015,42(6):135~140

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-08-13
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭