+高级检索
电池储能系统SOC神经网络融合估计方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


SOC Neural Network Fusion Estimation Method for Battery Energy Storage System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了更好地获取电池储能系统当前的运行状态,提出了基于神经网络融合的电池储能系统SOC估计方法.首先,对比分析了前馈(BP)、门控循环单元(GRU)和长短时记忆(LSTM)神经网络算法的优劣,BP计算时间较短,LSTM对时序数据估计精度较高;然后,利用KL散度、皮尔逊相关系数和灰色关联度分析了不同输入参量和SOC的相关程度,并和LSTM估计结果相比对,筛选出对电池储能系统SOC影响较大的特征参量;最后,应用经验模态分解算法将SOC数据分解为多个分量,利用样本熵将分量聚合为高低两个频段,进而应用BP、LSTM神经网络算法分频段估计,和单一策略相比,该方法在提高SOC估计精度的同时,减少了计算时间.

    Abstract:

    To better obtain the current operating state of the battery energy storage system, a state of charge (SOC) evaluation method of the battery energy storage system based on neural network fusion is proposed. First, the advantages and disadvantages of back-propagation (BP), gated recurrent unit (GRU), and long and short-term memory (LSTM) neural network algorithms are compared. The calculation time of BP is usually short, while the estimation accuracy of LSTM for temporal data is high. Then the correlation degree between different input parameters and SOC is analyzed by KL divergence, Pearson correlation coefficient, and grey correlation degree. Compared with the LSTM estimation results, the characteristic parameters that have a greater impact on the SOC of the battery energy storage system are selected. Finally, the empirical mode decomposition algorithm is applied to decompose the SOC data into multiple components, and the sample entropy is used to aggregate the components into high and low-frequency bands. BP and LSTM neural network algorithms are used to estimate SOC in different frequency bands. Compared with a single strategy, the proposed method not only improves the estimation accuracy of SOC, but also reduces the calculation time.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

SUN Yushu, LI Hongchuan, WANG Bo, JIA Dongqiang, PEI Wei, TANG Xisheng?.电池储能系统SOC神经网络融合估计方法[J].湖南大学学报:自然科学版,2023,(10):31~40

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-13
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭