+高级检索
基于核极限学习机与容积卡尔曼滤波融合的锂电池荷电状态估计
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Estimation on State of Charge of Lithium Battery Based on Fusion of Kernel Extreme Learning Machine and Cubature Kalman Filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了提高锂电池荷电状态(SOC)估计精度,在容积卡尔曼滤波(CKF)算法中引入误差补偿机制,提出一种核极限学习机(KELM)和CKF相融合的估计方法.通过递归最小二乘法(RLS)动态跟踪等效电路模型的参数,由CKF算法得到SOC的初步估计值;以锂电池的工作电压、电流、CKF算法的残差均值和方差作为输入,初步估计值与真实值的偏差作为输出,采用KELM算法,在联邦城市驾驶工况(FUDS)下进行训练,得到CKF算法估计误差的预测模型;利用KELM预测模型的回归预测能力对初步估计值进行误差补偿,从而达到降低估计误差的目的.为了验证所提方法的有效性和先进性,采用Arbin电池测试平台的实验数据进行仿真分析,结果表明在多种工况下所提方法均具有更高的估计精度、更强的泛化性和鲁棒性.

    Abstract:

    To improve the State of Charge (SOC) estimation accuracy, an improved Cubature Kalman Filter (CKF) algorithm is proposed, in which an error compensation module based on Kernel Extreme Learning Machine (KELM) algorithm is integrated into CKF properly. The Recursive Least-Square method (RLS) is used to online estimate the parameters of the equivalent circuit model of the battery, and the preliminary SOC value is estimated using the CKF algorithm accordingly. Then, taking the operation voltage and current of the battery, and residuals mean and variance of the preliminary SOC estimation values as the input, and the corresponding SOC estimation error as the output, the SOC estimation error prediction model based on the KELM algorithm is obtained, and trained by using the Federal Urban Driving Schedule (FUDS) condition data. The regression prediction ability of the KELM model is utilized to perform error compensation on preliminary estimation, so as to reduce the error of SOC estimation. To verify the effectiveness and advancement of the proposed method, the experimental data of the Arbin battery test platform are used for simulation analysis. The results show that the proposed method has higher estimation accuracy, stronger generalization, and robustness under various operating conditions.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

LIU Shilin?,LI Dejun, YAO Wei, WANG Ning.基于核极限学习机与容积卡尔曼滤波融合的锂电池荷电状态估计[J].湖南大学学报:自然科学版,2023,(10):51~59

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-13
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭