+高级检索
融合前馈及状态反馈的智能汽车模型预测控制
作者:

Model Predictive Control for Intelligent Vehicles Fusing Feed-forward and State Feedback
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    针对具有动力学约束的智能汽车路径精确跟踪问题,提出了一种融合前馈及状态反馈的模型预测控制(model predictive control, MPC)方法.首先,根据车辆二自由度模型建立MPC路径跟踪基础模型,然后考虑基础模型中道路曲率变化对系统产生的已建模稳态扰动,设计前馈控制器(feed-forward control, FFC)进行消除;并进一步采用比例积分微分(proportional integral derivative, PID)控制器进行系统误差状态反馈调节;最终形成融合前馈及状态反馈转角输入的模型预测最优调节控制律(MPC-FF-PID).最后基于MATLAB/Simulink和Carsim平台证实所提算法的有效性,并基于智能驾驶实车平台在园区低速场景下进行实车测试,最大横向和航向误差分别为0.128 7 m和0.063 9 rad,表明本文算法具备更高的跟踪精度及安全性.

    Abstract:

    In this paper,a model predictive control (MPC) method integrating feed-forward and state feedback is proposed for the problem of accurate path tracking for intelligent vehicles with dynamic constraints. Firstly, the MPC path tracking base model is established according to the vehicle two-degree-of-freedom model, and then, the modeled steady-state perturbations generated by the road curvature changes on the system in the base model are considered and designed to be eliminated by feed-forward control (FFC); Furthermore, the proportional integral derivative (PID) controller is used to regulate the system error state feedback; Meanwhile, the model predictive optimal regulation control law (MPC-FF-PID) is verified by integrating the feed-forward and state feedback corner inputs. Finally, the effectiveness of the proposed algorithm is confirmed based on MATLAB/Simulink and Carsim platforms, and a real vehicle test is carried out in the low-speed scenario in the park based on the intelligent driving real vehicle platform, and the maximum lateral and heading errors are 0.128 7 m and 0.063 9 rad, respectively, indicating that the proposed algorithm has higher tracking accuracy and safety.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

陈齐平 ?,曹天恒 ,黄少堂 ,江会华 ,江志强 ,时乐泉 .融合前馈及状态反馈的智能汽车模型预测控制[J].湖南大学学报:自然科学版,2024,51(8):165~175

复制
历史
  • 在线发布日期: 2024-08-26
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭