+高级检索
基于MDS-YOLO模型的小目标检测问题研究
作者:

Research of Small Object Detection Problem Based on MDS-YOLO Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    针对目前主流算法对小目标检测存在计算量大与准确率较低的问题,本文以轻量级网络MobileNetV3代替YOLOv4中的主干网络,并将颈部网络中的一部分普通卷积用深度可分离卷积替代,同时针对小目标检测定义一个新的损失函数IF-EIoU Loss,由此构建了MDS-YOLO目标检测模型.该模型具有较高的检测速度,且针对小目标具有较好的检测性能.为了验证模型的有效性,分别在MS COCO数据集和Visdrone2019数据集上进行了实验.与 YOLOv4算法相比,在MS COCO数据集上,MDS-YOLO算法的平均检测精度提升了1.5个百分点,对于小目标的检测精度提升了3.3个百分点,检测速度也从31帧/s提升至36帧/s;在Visdrone2019数据集上,MDS-YOLO算法将平均检测精度从YOLOv4的14.9%提升至16.3%.实验结果表明,本文提出的MDS-YOLO算法能有效提升小目标检测精度.

    Abstract:

    To solve the problem of large computation and low accuracy of the current mainstream algorithms for small object detection, this paper replaces the backbone network in YOLOv4 with the lightweight network MobileNetV3, and replaces some ordinary convolutions in the neck network with depthwise separable convolutions. At the same time, a new loss function IF-EIoU Loss is defined for small object detection. Therefore, MDS-YOLO object detection model is constructed. This model has a high detection speed and good detection performance for small object. To verify the effectiveness of the model, experiments are carried out on MS COCO dataset and Visdrone2019 dataset, respectively. Compared with the YOLOv4 algorithm, on MS COCO dataset, the average detection accuracy of the MDS-YOLO algorithm is improved by 1.5 percentage points, the detection accuracy of small object is increased by 3.3 percentage points, and the detection speed is also increased from 31 frames per second to 36 frames per second. On the Visdrone2019 dataset, the MDS-YOLO algorithm increases the average detection accuracy from 14.9% of YOLOv4 to 16.3%. The experimental results show that the MDS-YOLO algorithm proposed can effectively improve the detection accuracy of small object.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

朱恩文 ,梁曌 ,肖进文 ,梁小林 ?.基于MDS-YOLO模型的小目标检测问题研究[J].湖南大学学报:自然科学版,2024,51(12):78~86

复制
历史
  • 在线发布日期: 2024-12-31
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭