摘要
被动斜桩大多应用于开挖基坑的支护工程中,很少应用于填筑体抗滑工程中,且工程性状尚不清楚.为分析侧向堆载作用下被动斜桩受力变形特性,本文基于应变楔模型(SW模型),结合Boussinesq解进行双重积分及坐标变换,建立了侧向堆载作用下被动斜桩的挠曲微分方程,推导了其相应桩身内力与侧移的有限差分解,并通过与现场试验和室内模型试验对比验证了本文方法的有效性.结果表明:相同荷载作用下,负斜桩的桩顶侧移与桩身弯矩峰值最小、正斜桩次之、直桩最大;正斜桩和负斜桩的桩顶侧移与桩身弯矩峰值均随其倾斜角的增大而减小.侧向堆载下斜桩桩身变形模式为“平移叠加转动”.桩身常规倾斜角范围内(≤20°),坡脚处将桩设置成向堆载中心倾斜、倾斜角较大的负斜桩,可以取得更好的工程效果 .
工程中,桩体常常直接承受巨大的垂直和水平荷载,或者抵抗岩土侧向移动.根据桩-土相互作用原理,堆载侧面的桩体属于“被动桩
应变楔模型不仅能充分考虑不同土质条件下模型桩刚度、截面形状、桩身材料非线性等因素,还能分析桩周土层的连续性及液化情况,相较于其他分析方法更具优
本文提出一种适用于侧向堆载作用下被动斜桩桩身内力与侧移的计算方法,引入应变楔模型以充分考虑桩周土体的连续性和抗剪强度.通过对被动斜桩进行受力分析,构建侧向堆载作用下斜桩桩身控制方程;利用应变楔模型对桩前土层地基抗力进行推导;结合Boussinesq解进行二重积分及坐标变换得到桩身后侧附加土体压力分布规律;借助有限差分程序求解桩身各深度位置的侧向位移.对比现场试验与室内模型试验结果,验证本文方法,为侧向堆载作用下被动斜桩受力变形分析提供参考,并给出工程建议.
1 基于应变楔模型的简化分析方法
国内外对于正、负斜桩定义尚未统
桩侧堆载作用下斜桩的计算模型如
(1) |

图1 堆载下被动斜桩计算模型
Fig.1 Calculation model of passive battered pile under surcharge
(a)正斜桩 (b)负斜桩
式中:EI为桩身抗弯刚度;pp(zi)为桩前土体提供的地基抗力;pa(zi)为堆载导致的桩后附加土压力;x、z分别表示桩身局部坐标下的桩身挠度和桩身深度.
1.1 桩前土体的应变楔模型
桩前三维应变楔如

图2 三维应变楔
Fig.2 Three-dimensional strain wedge
(a)直桩 (b)正斜桩 (c)负斜桩
直桩和正斜桩的第i层土楔开展宽度为:
(2) |
由于桩身倾斜方向与地面影响,负斜桩第i层土楔开展宽度计算公式与直桩和正斜桩有所不同.
当第i层土楔单元深度时,负斜桩第i层土楔开展宽度同样可由
当第i层土楔单元深度时,负斜桩第i层土楔开展宽度为:
(3) |
将桩前土楔体离散成n个等厚的土楔单元,直桩、正斜桩和负斜桩的受力分析分别如图

(a) 平面

(b) 剖面
图3 直桩应变楔模型
Fig.3 Strain wedge model of straight pile

(a) 平面

(b) 剖面
图4 正斜桩应变楔模型
Fig.4 Strain wedge model of positive battered pile

(a) 平面

(b) 剖面
图5 负斜桩应变楔模型
Fig.5 Strain wedge model of negative battered pile
引入应力水平SL,第i层土楔单元应力水平SLi可通过三轴试验或经验公式得到:
单桩第i层土楔单元水平应力增量∆σh,i
(4) |
第i层土楔单元水平应力极限增量∆σhf,i
(5) |
其中,为第i层土楔单元竖向有效应力,对于直桩:,对于正(负)斜桩:.
各土楔单元应力均满足应力平衡方程,故桩前土体提供的地基抗力pp(zi)为:
(6) |
式中:S1、S2为桩形系数,方桩截面S1、S2均为1.0,圆桩截面S1、S2分别为0.75和0.50;Ws,i表示第i层土楔单元对应桩段所承担的上部土条重力;Wseg,i表示第i层土楔单元对应桩段的重力.当模型桩桩身倾斜角β=0时,选用
非极限状态桩侧剪应力τi
(7) |
式中:φs,i和Cs分别为第i层土楔单元桩-土界面摩擦角和黏聚力;Cm为基于摩尔库伦破坏准则的桩侧土体内摩擦角发挥值对应截距 .当桩周土层为砂土时,应选用
由摩尔应变圆原理可知,第i层土楔单元桩身转角δi与水平位移Xi关系为:
(8) |
(9) |
其中,δi可由桩土变形协调条件求得,桩土连接参数,土楔单元泊松比为ν, .
联立
(10) |
1.2 桩后土压力
如
(11) |
(12) |
式中:2b为均布条形荷载长度;l为三角形分布荷载长度.

图6 梯形荷载分布示意图
Fig.6 Schematic of trapezoidal distributed load
堆载作用下桩后水平附加土压力应为Boussinesq积分解的2
(13) |
1.3 有限差分法求解桩身挠曲微分方程
当土层性质差异不大时,可将天然土层视为成层土所组成的多层均质土,此时宜采用有限差分法进行求解 .基于传统弹性地基梁法(即BEF法)与局部变形理论,结合桩、土物理力学性质参数,将斜桩沿桩身方向划分成n个厚度为dz的桩段单元,将四阶差分公式代入
(14) |
桩顶自由、桩顶弯矩M0、剪力Q0已知条件下,两个补充方程为:
(15) |
桩端自由,桩底剪力、弯矩均可视为零,两个补充方程为:
(16) |
基于层间完全接触理论,联立对应边界条件补充方程,将桩段各节点刚度矩阵合并为整体刚度矩阵[K],桩身转角、弯矩及剪力的具体差分格式由参考文献[
1) 综合考虑桩-土系统相关尺寸与物理力学参数,将斜桩及桩周土层分别离散成n个厚度为dz的单元段.
2) 令桩前应变楔开展深度为H、初始应变为ε,由
3) 比较(x0)SWM和(x0)BEF,当时,即可认为二者相等,结束循环;否则,修正H和ε,返回步骤2).
2 试验验证
2.1 实体工程测试
邓会
土层 | 厚度/m | 重度γ/(kN· | 压缩模量Es/MPa | 黏聚力c/kPa | 内摩擦角φ/(°) | 泊松比ν |
---|---|---|---|---|---|---|
粉质 黏土 | 1.6 | 19 | 4.5 | 22 | 6.7 | 0.32 |
淤泥1 | 7.9 | 17.1 | 1.99 | 5.5 | 1.25 | 0.4 |
淤泥2 | 20.8 | 16.4 | 1.83 | 8.4 | 2.18 | 0.4 |
淤泥质黏土 | 6.4 | 17 | 2.17 | 15 | 3.85 | 0.4 |
黏土1 | 17.5 | 17.3 | 2.73 | 19.25 | 5.83 | 0.35 |
黏土2 | 11.9 | 17.6 | 2.98 | 23 | 7.7 | 0.3 |
圆砾 | 4.4 | 18.2 | 30 | 2 | 32 | 0.25 |
卵石 | 14.4 | 18.7 | 42 | 1 | 35 | 0.2 |
将本文计算方法得到的桩身侧移与文献[

图7 桩身位移对比
Fig.7 Comparison of pile displacement
2.2 模型试验
为进一步探讨侧向堆载下砂土中被动斜桩桩身变形响应规律及其理论计算方法的合理性,以砂土中被动斜桩室内模型试验为例(见

(a) 平面布置图

(b) 立面布置示意图
图8 模型试验方案(单位:mm)
Fig.8 Layout of model test scheme(unit:mm)
模型试验加载系统主要包括工字梁、角钢、承压板、砝码和吊篮,通过依次向吊篮中添加砝码进行加载,换算可得模型试验第一、第二级桩侧堆载值分别为p1=84.375 kPa和p2=184.375 kPa.模型桩桩身同一截面应变片数据由应变仪采集,其换算公式可参考文献[

(a) p=84.375 kPa

(b) p=184.375 kPa
图9 不同倾斜角斜桩桩身侧移
Fig.9 Lateral displacement of battered piles with different
inclination angles

(a) p=84.375 kPa

(b) p=184.375 kPa
图10 不同倾斜角斜桩桩身弯矩
Fig.10 Bending moment of battered piles with different
inclination angles
1) 本文建立的侧向堆载下被动斜桩桩身受力变形的有限差分解与室内模型试验结果吻合较好 .对比
桩身倾斜角β/(°) | 桩顶侧移x0 | 桩身弯矩峰值Mmax | ||||
---|---|---|---|---|---|---|
试验值/mm | 计算值/mm | 误差/% | 试验值/(N·m) | 计算值/(N·m) | 误差/% | |
-20 | 0.68 | 0.69 | 0.7 | 5.9 | 6.1 | 3.4 |
-10 | 1.47 | 1.48 | 0.3 | 7.2 | 7.6 | 5.1 |
0 | 2.89 | 2.88 | -0.5 | 12.3 | 12.8 | 4.3 |
+10 | 1.61 | 1.67 | 3.6 | 7.4 | 8.1 | 8.9 |
+20 | 0.89 | 0.85 | -4.6 | 5 | 5.3 | 5.6 |
桩身倾斜角β/(°) | 桩顶侧移x0 | 桩身弯矩峰值Mmax | ||||
---|---|---|---|---|---|---|
试验值/mm | 计算值/mm | 误差/% | 试验值/(N·m) | 计算值/(N·m) | 误差/% | |
-20 | 4.20 | 4.20 | 0.01 | 21.2 | 21.9 | 3.3 |
-10 | 7.90 | 7.90 | 0.01 | 32.2 | 33.9 | 5.0 |
0 | 9.79 | 9.81 | 0.30 | 41.6 | 44.1 | 5.7 |
+10 | 8.20 | 8.20 | 0.01 | 38.8 | 42.5 | 8.8 |
+20 | 6.40 | 6.40 | -0.01 | 26.1 | 27.7 | 5.9 |
2) 模型桩桩身侧移沿桩顶至桩底方向呈线性递减,侧移峰值出现在桩顶位置;加载过程中,直桩桩顶侧移远大于桩底侧移,桩底侧移很小,桩顶与桩底的侧移差值随荷载的增大而显著增大,位移模式为“平移叠加转动”.堆载相同时,斜桩桩身位移峰值随桩身倾斜角增大而减小.堆载和倾斜角相同时,负斜桩位移峰值小于正斜
3) 模型桩桩身弯矩随桩身深度增加先增大后减小再稍增大,桩身弯矩峰值位于土层中上部,堆载下被动斜桩破坏模式为弯曲破坏.堆载相同时,斜桩桩身弯矩峰值随桩身倾斜角增大而减小.堆载和倾斜角相同时,负斜桩弯矩峰值小于正斜桩.
3 结 论
本文基于应变楔模型求得桩前土层地基抗力,结合Boussinesq解进行双重积分及坐标变换得到桩后土体压力分布形式,推导了侧向堆载作用下被动斜桩桩身挠曲微分方程,获得了相应的桩身内力位移分析有限差分解,并与现场试验和室内模型试验进行对比分析,得到以下结论:
1) 侧向堆载下,直桩和斜桩的桩身侧移均随桩身深度的增加而减小,桩身侧移峰值出现在桩顶附近 .堆载相同时,常规倾斜角(β ≤ 20°)的斜桩桩身位移峰值随桩身倾斜角增大而减小.堆载和倾斜角相同时,负斜桩位移峰值小于正斜桩.
2) 堆载作用下,直桩和斜桩的桩身弯矩均随桩身深度的增加呈先增大后减小再稍增大趋势,桩身弯矩峰值出现在土层中上部.堆载相同时,常规倾斜角(β ≤ 20°)的斜桩桩身弯矩峰值随桩身倾斜角增大而减小 .堆载和倾斜角相同时,负斜桩弯矩峰值小于正斜桩.
3) 工程中,建议采用负斜桩代替直桩,能更有效提高桩体的抗滑移能力 .
参考文献
DE BEER E E. The effects of horizontal loads on piles due to surcharge or seismic effects[C]//BRUNI R, CORRADINI A, LAFUENTE A L, et al. Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering. Tokyo: ICSMFE, 1977:547-558. [百度学术]
竺明星, 龚维明, 徐国平,等. 大面积堆载作用下轴向受力隔离桩的承载机制分析[J]. 岩石力学与工程学报, 2014, 33(2):421-432. [百度学术]
ZHU M X, GONG W M, XU G P, et al. Analysis of bearing mechanism of axially loaded isolation piles under larger-scale surcharge loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2):421-432. (in Chinese) [百度学术]
冯国辉, 窦炳珺, 黄展军,等. 盾构开挖引起的临近桩基水平位移的简化计算方法[J]. 湖南大学学报(自然科学版),2022,49(9):136-144. [百度学术]
FENG G H, DOU B J, HUANG Z J, et al. Simplified calculation method for lateral displacement of adjacent pile due to tunneling[J]. Journal of Hunan University (Natural Sciences), 2022, 49(9):136-144. (in Chinese) [百度学术]
ZHANG A J, MO H H, ZHU Z D. Theoretical elastio-plastic solution for piles subject to lateral soil movement[J]. Procedia Earth and Planetary Science, 2012, 5:58-63. [百度学术]
杨敏, 周红波. 承受侧向土体位移桩基的一种耦合算法[J]. 岩石力学与工程学报, 2005, 24(24):4491-4497. [百度学术]
YANG M, ZHOU H B. A coupling analytical solution of piles subjected to lateral soil movements[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24):4491-4497. (in Chinese) [百度学术]
胡建荣, 王昌金, 朱向荣. 滑动土体与邻近桩基相互作用的弹塑性解[J]. 岩土力学, 2011, 32(11):3414-3419, 3426. [百度学术]
HU J R, WANG C J, ZHU X R. Elastoplastic solution for interaction between slipping soil and adjacent piles[J]. Rock and Soil Mechanics, 2011, 32(11):3414-3419, 3426. (in Chinese) [百度学术]
张浩, 石明磊, 郭院成. 土体侧移作用下被动桩受力变形的简化解析计算[J]. 东南大学学报(自然科学版), 2016, 46(2):392-399. [百度学术]
ZHANG H, SHI M L, GUO Y C. Simplified analytical calculation for forced deformation of passive pile subjected to lateral soil displacement[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(2):392-399. (in Chinese) [百度学术]
张浩, 孙凯, 杨玲,等. 被动桩-侧移软土相互作用于桩身被动荷载分析[J]. 土木工程与管理学报, 2020, 37(3):45-51. [百度学术]
ZHANG H, SUN K, YANG L, et al. Analysis of passive pile-lateral soft soil interaction and passive loading on pile[J]. Journal of Civil Engineering and Management, 2020, 37(3): 45-51. (in Chinese) [百度学术]
梁发云, 李彦初, 黄茂松. 基于Pasternak双参数地基模型水平桩简化分析方法[J]. 岩土工程学报, 2013, 35(增刊1):300-304. [百度学术]
LIANG F Y, LI Y C, HUANG M S. Simplified method for laterally loaded piles based on Pasternak double-parameter spring model for foundations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup.1):300-304. (in Chinese) [百度学术]
POULOS H G. Analysis of piles in soil undergoing lateral movement[J]. JSMFD, ASCE, 1973, 99(SM5):391-406. [百度学术]
POULOS H G, DAVIS E H. Pile foundation analysis and design[M]. New York: John Wiley & Sons, 1980. [百度学术]
陈福全, 黄伟达. 基于Poulos弹性理论的被动桩改进算法[J]. 岩土力学, 2008, 29(4):905-910. [百度学术]
CHEN F Q, HUANG W D. A modified analysis method for passive pile based on Poulos’s elastic theory[J]. Rock and Soil Mechanics, 2008, 29(4):905-910. (in Chinese) [百度学术]
上官士青, 杨敏, 李卫超. 分别考虑桩和土水平向位移的被动桩简化算法[J]. 建筑结构学报, 2018, 39(1):162-172. [百度学术]
SHANGGUAN S Q, YANG M, LI W C. Simplified method of passive piles with independent lateral displacement of piles and soil[J]. Journal of Building Structures, 2018, 39(1):162-172. (in Chinese) [百度学术]
李双龙, 魏丽敏, 冯胜洋,等. 基于扩展Koppejan模型的被动桩-软土时效性相互作用研究[J]. 岩土力学, 2022, 43(9):2602-2614. [百度学术]
LI S L, WEI L M, FENG S Y, et al. Time-dependent interactions between passive piles and soft soils based on the extended Koppejan model[J]. Rock and Soil Mechanics, 2022, 43(9):2602-2614. (in Chinese) [百度学术]
杨吉新, 王金川, 陈天驰,等. 一种单侧堆载作用下桩基侧向位移计算方法[J]. 武汉理工大学学报(交通科学与工程版),2023,47(3):556-567. [百度学术]
YANG J X, WANG J C, CHEN T C, et al. A method of calculating lateral displacement of pile under single-side surcharge load[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering),2023,47(3):556-567. (in Chinese) [百度学术]
郭景琢, 李昕昊, 程雪松,等. 基坑斜直组合倾斜桩支护结构设计计算方法研究[J]. 土木工程学报,2023,56(8):153-163. [百度学术]
GUO J Z, LI X H, CHENG X S, et al. Study on design and calculation method of vertical and inward-inclined piles retaining structure of excavation[J]. China Civil Engineering Journal,2023,56(8):153-163.(in Chinese) [百度学术]
周海祚, 郑刚, 何晓佩,等. 基坑倾斜桩支护稳定特性及分析方法研究[J]. 岩土工程学报, 2022, 44(2):271-277. [百度学术]
ZHOU H Z, ZHENG G, HE X P, et al. Stability characteristics and analysis method for inclined retaining walls in excavations[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2):271-277. (in Chinese) [百度学术]
赵明华, 李帅超, 彭文哲. 基于有限元分析的横向受荷刚性桩应变楔模型形体参数研究[J]. 铁道科学与工程学报, 2019, 16(3):674-683. [百度学术]
ZHAO M H, LI S C, PENG W Z. Study of laterally-loaded rigid pile strain wedge model shape parameters base on finite element analysis[J]. Journal of Railway Science and Engineering, 2019, 16(3):674-683. (in Chinese) [百度学术]
NORRIS G M. The drained shear strength of uniform quartz sand as related to particle size and natural variation in particle shape and surface roughness[D]. Berkeley: University of California, 1977:210-262. [百度学术]
NORRIS G M. Theoretically based BEF laterally loaded pile analysis[C]// Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling. Paris: Technip, 1986:361-386. [百度学术]
ASHOUR M, NORRIS G M, PILLING P. Lateral loading of a pile in layered soil using the strain wedge model[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(4):303-315. [百度学术]
ASHOUR M, PILLING P, NORRIS G M. Lateral behavior of pile groups in layered soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6):580-592. [百度学术]
ASHOUR M, ARDALAN H. Analysis of pile stabilized slopes based on soil-pile interaction[J]. Computers and Geotechnics, 2012, 39:85-97. [百度学术]
ASHOUR M, ALAAELDIN A, ARAB M G. Laterally loaded battered piles in sandy soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(1):06019017. [百度学术]
彭文哲, 赵明华, 杨超炜,等. 斜坡地基桩前土抗力的应变楔模型修正[J]. 中南大学学报(自然科学版), 2020, 51(7):1936-1945. [百度学术]
PENG W Z, ZHAO M H, YANG C W, et al. Modification of strain wedge model for soil resistance in front of piles in sloping ground[J]. Journal of Central South University (Science and Technology), 2020, 51(7):1936-1945. (in Chinese) [百度学术]
李忠诚, 杨敏. 被动桩土压力计算的被动拱-主动楔模型[J]. 岩石力学与工程学报, 2006, 25(增刊2):4241-4247. [百度学术]
LI Z C, YANG M. Passive arching-active wedge model of soil pressure calculation in passive piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Sup.2):4241-4247. (in Chinese) [百度学术]
PRAKASH S, SUBRAMANYAM G. Behaviour of battered piles under lateral loads[J]. Journal Indian Nature Social of Soil Mechanical and Foundation Engineering, 1965(4):177-196. [百度学术]
RANJAN G, RAMASAMY G, TYAGI R P. Lateral response of batter piles and pile bents in clay[J]. Indian Geotechnical Journal, 1980, 10(2):135-142. [百度学术]
郑刚, 王玉萍, 程雪松,等 .倾斜桩支护结构的工作性能和基坑稳定性[J]. 厦门大学学报(自然科学版), 2021, 60(1):115-124. [百度学术]
ZHENG G, WANG Y P, CHENG X S, et al. Working performance and stability of excavation retained by inclined retaining structures[J]. Journal of Xiamen University (Nature Science), 2021, 60(1):115-124. (in Chinese) [百度学术]
叶金铋, 周先齐, 王晨飞,等. 基坑双排斜桩模型试验研究[J]. 地下空间与工程学报, 2021, 17(2):398-404, 519. [百度学术]
YE J B, ZHOU X Q, WANG C F, et al. Model test of double-row inclined piles in foundation pit[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(2):398-404,519. (in Chinese) [百度学术]
YE J, HE X. Performance of batter pile walls in deep excavation: laboratory test and numerical analysis[J]. Mechanics of Advanced Materials and Structures, 2021, 28(14):1-10. [百度学术]
胡明, 雷用, 赵晓柯. 倾斜微型桩桩身参数敏感性有限元分析[J]. 后勤工程学院学报, 2014, 30(1):12-16, 68. [百度学术]
HU M, LEI Y, ZHAO X K. The finite element analysis of inclined micropiles parameter sensitivity[J]. Journal of Logistical Engineering University, 2014, 30(1):12-16, 68. (in Chinese) [百度学术]
凌道胜, 任涛, 王云岗. 砂土地基斜桩水平承载特性p-y曲线法[J]. 岩土力学, 2013, 34(1): 155-162. [百度学术]
LING D S, REN T, WANG Y G. A p-y curve method for horizontal bearing characteristics of single batter pile in sands[J]. Rock and Soil Mechanics, 2013, 34(1):155-162. (in Chinese) [百度学术]
周德泉,颜超,邓超. 堆载作用下桩体工程特性研究[J].中外公路,2015,35(1):5-8. [百度学术]
ZHOU D Q, YAN C,DEDG C.Study on engineering characteristics of pile under surcharge load[J]. Journal of China & Foreign Highway,2015,35(1):5-8.(in Chinese) [百度学术]
周德泉,杨帆,谭焕杰.土体中倾斜桩工程性状研究[J].中外公路,2012,32(3):14-18. [百度学术]
ZHOU D Q, YANG F,TAN H J.Study on engineering behavior of inclined pile in soil[J]. Journal of China & Foreign Highway,2012,32(3):14-18.(in Chinese) [百度学术]
ZHANG L M, MCVAY M C, LAI P W. Centrifuge modelling of laterally loaded single battered piles in sands[J]. Canadian Geotechnical Journal, 1999, 36(6):1074-1084. [百度学术]
周德泉,王创业,周毅,等.被动倾斜桩应用研究与展望[J].中外公路, 2023,43(2):1-10. [百度学术]
ZHOU D Q, WANG C Y, ZHOU Y, et.al. Application research and prospect of passive battered pile[J].Journal of China & Foreign Highway,2023,43(2):1-10. (in Chinese) [百度学术]
刘光秀, 李玉根, 曹艳妮. 路堤荷载下地基的侧向变形计算分析[J]. 岩土力学, 2018, 39(12):4517-4536. [百度学术]
LIU G X, LI Y G, CAO Y N. Calculation and analysis of lateral deformation of ground under embankment load[J]. Rock and Soil Mechanics, 2018, 39(12):4517-4536. (in Chinese) [百度学术]
张浩, 石名磊, 郭院成,等. 不平衡堆载作用下临近结构桩的侧向受力机制[J]. 岩土工程学报, 2016, 38(12):2226-2236. [百度学术]
ZHANG H, SHI M L, GUO Y C, et al. Lateral mechanical behaviors of structural piles adjacent to imbalanced surcharge loads[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2226-2236. (in Chinese) [百度学术]
尹平保, 聂道流, 杨朝晖,等. 斜坡基桩p-y曲线及水平承载计算方法研究[J]. 岩石力学与工程学报, 2018, 37(4):996-1003. [百度学术]
YIN P B, NIE D L, YANG Z H, et al. The p-y curve and computation method of the horizontal bearing capacity of piles in sloping ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 996-1003. (in Chinese) [百度学术]
邓会元. 滨海吹填围垦区堆载作用下桩基承载特性研究[D]. 南京: 东南大学, 2021:189-203. [百度学术]
DENG H Y. Study on bearing characterics of pile foundation under surcharge load in coastal reclamation area[D]. Nanjing: Southeast University, 2021:189-203. (in Chinese) [百度学术]
周德泉, 冯晨曦, 肖灿,等. 倾斜软基上斜直桩组合结构单侧受力破坏模式试验[J]. 中国公路学报, 2021, 34(7):201-214. [百度学术]
ZHOU D Q, FENG C X, XIAO C, et al. Experimental study on the failure mode of inclined-straight pile composite structure on declining soft foundation under single side load[J]. China Journal of Highway and Transport, 2021, 34(7):201-214. (in Chinese) [百度学术]
曹卫平, 夏冰, 赵敏,等. 砂土中水平受荷斜桩的p-y曲线及其应用[J]. 岩石力学与工程学报, 2018, 37(3):743-753. [百度学术]
CAO W P, XIA B, ZHAO M, et al. p-y curves of laterally loaded batter piles in sand and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 743-753. (in Chinese) [百度学术]