(College of Mechanical and Vehicle Engineering, Hunan Univ, Changsha, Hunan410082, China) 在知网中查找 在百度中查找 在本站中查找
Affiliation:
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
摘要:
为实现电池SOC(State of Charge)的精确估计与提高电池模型的精确性,采用等效电路模型PNGV电池试验手册中的标准电池模型,基于辅助变量法和最小二乘法相融合的方法提出了混合动力镍氢动力电池在线参数辨识方法,并利用MATLB/SIMULINK建立电池模型.仿真分析结果显示,所建立的电池模型电压最大误差为4.2 V,平均误差为0.57V,SOC的估计最大误差为0.048,平均误差为0.011,能很好地拟合真实数据.
To realize the accurate estimation of battery SOC and increase the precision of battery model, by inoculating standard battery model from equivalent circuit model PNGV battery test manual and based on instrumental variable technique and least squares technique, an online hybrid power metal hydride electric batteries parameters estimation algorithm was proposed to establish battery model using MATLB/SIMULINK. Simulation analysis has shown that the maximal error of battery model voltage is 4.2 V, the mean error is 0.57 V, and the maximal error of the accurate estimate of SOC is 0.048. The mean error is 0.011. It can follow the true data well.