+高级检索
基于机器学习算法的盾构掘进地表沉降预测方法
作者:

Prediction Method of Tunneling-induced Ground Settlement Using Machine Learning Algorithms
Author:
  • CHEN Renpeng1,2,3?覮,DAI Tian1,2,3,ZHANG Pin4,WU Huaina1,2,3

    CHEN Renpeng1,2,3?覮,DAI Tian1,2,3,ZHANG Pin4,WU Huaina1,2,3

    (1. Key Laboratory of Building Safety and Energy Efficiency of Ministry of Education,Hunan University,Changsha 410082,China; 2. National Center for International Research Collaboration in Building Safety and Environment,Hunan University,Changsha 410082,China; 3. College of Civil Engineering,Hunan University,Changsha 410082,China; 4. Department of Civil and Environmental Engineering,Hong Kong Polytechnic University,Kowloon,Hong Kong,China)
    在知网中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    针对有限元、地层损失率等方法难以考虑多参数耦合作用情况下的地表沉降预测的问题,基于BP神经网络(BPNN)和随机森林算法(RF)两种机器学习算法的多参数、非线性拟合能力,提出了预测盾构掘进过程中地表最大沉降以及纵向沉降曲线的预测方法. 通过粒子群算法(PSO)确定机器学习算法的最优超参数,通过k折交叉验证方法提高预测方法的鲁棒性. 结果表明BP神经网络的预测结果误差较大,难以预测到较大的地表沉降,随机森林算法能够准确预测地表最大沉降和纵向沉降曲线.

    Abstract:

    It is difficult to consider the prediction of ground settlement under the coupling effect of multiple factors for the finite element method and formation loss rate. Based on the multi-factor and nonlinear fitting ability of back-propagation neural network(BPNN) and random forest(RF),these two machine learning algorithms are adopted to predict the tunneling-induced ground settlement. The optimum hyper-parameters of the two machine learning algorithms are determined by particle swarm optimization(PSO),and k-fold cross validation method is used to improve the robustness of the prediction method. The prediction results indicate that the prediction error of BP neural network is larger and it’s hard for BP neural network to predict the large settlement. The random forest algorithm can accurately predict the maximum settlement and longitudinal ground settlement curve.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

陈仁朋?覮,戴田,张品,吴怀娜.基于机器学习算法的盾构掘进地表沉降预测方法[J].湖南大学学报:自然科学版,2021,48(7):111~118

复制
历史
  • 在线发布日期: 2021-07-15
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭