+高级检索
旋转式磁流变螺旋流动阻尼器扭矩增强研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Torque Enhancement of Rotary Magnetorheological Damper Based on Helical Flow
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为提高旋转式磁流变阻尼器输出扭矩密度,提出了一种具有更高精度的旋转式磁流变阻尼器设计方法. 建立了螺旋流动磁流变阻尼器内部各通道的磁流变液准稳态流动微分方程,基于Herschel-Bulkley本构模型推导了磁流变液速度分布表达式,研究了螺旋流动阻尼器在高速工况下阻尼力矩和动态范围的计算方法. 对阻尼器各通道的输出扭矩进行了数值仿真,结果表明,在高速工况下,随着电流增加,螺旋流动模式的扭矩增强效应呈现先上升再下降的趋势,并最终退化为纯剪切模式. 设计加工了样机,并进行了低速和高速性能测试,实验结果显示,实验结果与理论计算吻合,零场高速工况下改进模型相较于传统模型平均误差减小129.4%,为设计高输出扭矩密度的旋转式磁流变阻尼器提供了理论基础.

    Abstract:

    In order to improve the output torque density of the rotary magnetorheological(MR) damper,a design method of the rotary MR damper with higher precision was proposed. The quasi-steady-state flow differential equation of the MR fluid in each channel of the damper was established. The expression of the velocity distribution of the MR fluid was obtained by using the Herschel-Bulkley constitutive model. The calculation method of damping torque and dynamic range of the damper under high-speed conditions were studied. A numerical simulation of the output torque for each channel of the damper was carried out. The results show that under high-speed conditions,as the current increases,the torque enhancement effect of the helical flow mode shows a trend of first rising and then falling,and finally degenerates into a pure shear mode. The prototype was designed and processed,and low-speed and high-speed performance tests were carried out. The test results are consistent with the theoretical calculations. The improved model under zero-field and high-speed conditions reduce the average error by 129.4%,compared with the traditional model,providing a theoretical basis for designing a rotary MR damper with high output torque density.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

董小闵?覮,王陶,王羚杰,于建强,李鑫,李彪.旋转式磁流变螺旋流动阻尼器扭矩增强研究[J].湖南大学学报:自然科学版,2021,48(10):39~47

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-11
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭