+高级检索
离散元与光滑颗粒流体力学耦合方法及应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


A Coupled Discrete Element Modelling and Smoothed Particle Hydrodynamics Method and Applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    磨机尺度极大,采用常规物理相似模拟和物料平衡模型适用性的方法,无法对磨机出料端排矿的动态过程进行观测和开展定量化表征,本文通过耦合离散元方法和光滑粒子流体动力学方法实现基于动态自由面的固液两相流仿真,并应用于量化对比不同磨机衬板机械结构对其排矿效率的影响.通过开展流变仪试验及仿真,确定了反映选定矿浆的流变特性参数及对应数值模拟参数.选取直型及弧型出料端衬板设计,基于所开发的数值模拟进行磨机排矿量及矿浆提升器回流量的量化表征.数值模拟结果表明,弧型出料端衬板的排矿量提升了13.4%,且矿浆提升器回流量降低了93.3%,现场工业试验结果与数值结果误差较小,验证了所开发的数值模拟模型的准确性.

    Abstract:

    Grinding dynamics and discharge efficiency within semi-autogenous (SAG) or autogenous (AG) mills are predominantly determined by the mill liner design. Due to the mill size, it is difficult to quantitatively investigate the dynamic discharge flow performance with physical experiments. This research aims to utilize a coupled discrete element modelling and smoothed particle hydrodynamics method to model the two-phase mineral slurry within grinding mills. Two distinctive mill liner designs, radial and curved discharge end, were selected and the developed numerical framework was employed to quantitatively compare the discharge efficiency of a selected mineral slurry. A rotary viscometer was initially used to calibrate the numerical modelling parameters to ensure the flow dynamics of the slurry to reflect its actual behaviour. Numerical modelling was conducted and the results indicated that the curved discharge end showed 13.4% throughput increase and 93.3% reduction on back-flow in pulp lifters. Modelling results were validated by site measurements.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

OU Tao, LIU Jie, CHEN Wei?.离散元与光滑颗粒流体力学耦合方法及应用[J].湖南大学学报:自然科学版,2023,(12):187~193

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-02
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭