+高级检索
基于Retinex和Gamma变换的低照度图像增强方法
作者:

Low-illumination Image Enhancement Method Based on Retinex and Gamma Transformation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    为均衡增强低照度图像的同时,保留其更多的细节信息,提出一种改进Retinex低照度图像增强算法. 该算法基于HSV(Hue, Saturation, Value)颜色空间,对分离出的明度分量和饱和度分量进行增强. 首先,使用限制对比度自适应直方图均衡化(Contrast Limited Adaptive Histogram Equalization,CLAHE)优化明度分量,使图像更接近均匀光照场景,并使用自适应Gamma对饱和度分量进行校正. 然后,采用三维块匹配滤波(Block-matching and 3D Filtering, BM3D)算法对光照分量进行估计,并求得相应的反射分量,提出一种改进Gamma变换函数,依据光照分量信息对明度分量进行增强,同时,采用Gabor滤波器和Canny算法对原图进行细节提取,提出一种细节增强策略,对反射分量及其纹理细节进行增强. 最后,将各分量进行加权融合,再将增强图像变换回RGB空间. 实验结果表明,所提算法相较于自动色彩均衡、自适应局部色调映射、低光照图像增强、带色彩恢复多尺度视网膜增强算法有更好的增强效果和普适性,且原图经过增强后,信息熵、峰值信噪比、结构相似性指数、图像质量指数、平均梯度有显著提升,均方根误差显著下降.

    Abstract:

    An improved Retinex low-illumination image enhancement algorithm is proposed for the balanced enhancement of low-illumination images while retaining their more detailed information. The algorithm is based on the HSV (Hue, Saturation, Value) color space and enhances the separated luminance and saturation components. First, the brightness component is optimized using Contrast Limited Adaptive Histogram Equalization (CLAHE) to make the image closer to the uniformly illuminated scene, and the saturation component is corrected using Adaptive Gamma. Then, a Block-matching and 3D Filtering (BM3D) algorithm is used to estimate the illumination component, the corresponding reflection component is obtained, and an improved Gamma transform function is proposed to enhance the luminance component based on the information of the illumination component. Meanwhile, the Gabor filter and Canny algorithm are used to extract the details of the original image, and a detail enhancement strategy is proposed to enhance the reflection component and its texture details. Finally, the components are fused with multiple weights, and then the enhanced image is transformed back to RGB space. Experimental results show that the proposed algorithm has better enhancement effect and universality than automatic color equalization, adaptive local tone mapping, low-illumination image enhancement, and multi-scale Retinex with color restoration. After enhancement, the original image showed significant improvements in information entropy,peak signal-to noise ratio, structural similarity index,universal image quality index,average gradient,while the root mean square error decreased significantly.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

王文韫 ?,舒晨洋 ,朱龙涛 ,黄靖龙 ,杨景云 ,李寿科 .基于Retinex和Gamma变换的低照度图像增强方法[J].湖南大学学报:自然科学版,2024,51(10):136~144

复制
历史
  • 在线发布日期: 2024-11-01
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭