+高级检索
基于改进YOLOv8的热轧带钢表面缺陷检测方法
作者:

Surface Defect Detection Method for Hot-rolled Strip Steel Based on Improved YOLOv8
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    针对目前热轧带钢表面缺陷检测精度低和效率低的问题,提出了一种基于改进YOLOv8s的目标检测算法.首先,提出了一种基于特征图二次拼接并融入GAM的SPPD模块,提升了模型多尺度信息融合能力.其次,提出了一种融合可变形卷积的特征提取模块DCN-block,以增大模型的感受野,提取完整的缺陷信息.最后,将特征融合网络中的C2f模块替换为BoT(bottleneck transformer)结构,将Transformer中的多头自注意力机制与卷积融合,提升模型的全局位置信息感知能力.实验结果表明,本文提出的算法在NEU-DET数据集上的平均精度均值(mAP)达到了80.5%,较原有的YOLOv8算法提升了5个百分点,同时检测速度达到了83帧/s, 满足实时检测的需求.

    Abstract:

    A object detection algorithm based on improved YOLOv8s is proposed to address the issues of low accuracy and low efficiency in surface defect detection of hot-rolled strip steel. Firstly, an SPPD module based on feature map secondary stitching and incorporating GAM is proposed, which enhances the model’s multi-scale information fusion ability. Secondly, a feature extraction module DCN-block that integrates deformable convolution is proposed to increase the receptive field of the model and extract complete defect information. Finally, the C2f module in the feature fusion network is replaced with a BoT (bottleneck transformer) structure, and the multi-head self-attention mechanism in the Transformer is fused with convolution to enhance the model’s global position information perception ability. The experimental results show that the proposed algorithm achieves mean average precision (mAP) of 80.5% on the NEU-DET dataset, which is five percentage points higher than the original YOLOv8 algorithm. At the same time, the detection speed reaches 83 frames per second, meeting the requirements of real-time detection.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

肖科 ?,杨昕宇 ,韩彦峰 ,宋斌 .基于改进YOLOv8的热轧带钢表面缺陷检测方法[J].湖南大学学报:自然科学版,2024,51(12):67~77

复制
历史
  • 在线发布日期: 2024-12-31
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭