+高级检索
EMMA注意力与多尺度融合下的图像修复
作者:

Image Inpainting with EMMA Attention and Multi-scale Fusion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    针对图像缺失区域与其周围的纹理、结构密切相关而无法准确推断缺失区域内容的问题, 提出一种单阶段图像修复模型. 通过卷积层和FastStage模块对特征进行压缩、重建和增强, 结合自注意力和多层感知机来捕捉特征之间的上下文关系. 在模型中引入EMMA机制. 以增强生成器对特征的注意力和重要性感知, 避免模型参数的更新出现抖动和振荡现象,从而提高生成器的性能和生成结果的质量. 通过判别器对修复后的图像与原始图像的一致性进行评估. 针对CelebA、Places2以及Paris StreetView数据集进行的端到端实验结果表明, 相较于现有的经典方法, 该模型的修复结果更符合视觉语义, 能够精细地修复图像的细节纹理和局部特征.

    Abstract:

    To address the problem of accurately inferring the content of missing regions in an image when they are closely related to the surrounding textures and structures, we propose a single-stage image inpainting model. The model first compresses, reconstructs, and enhances features through convolutional layers and the FastStage module, while self-attention and multi-layer perceptron are incorporated to capture contextual relationships among features. Furthermore, in order to enhance the attention and importance perception on features, we propose EMMA in the models, which avoids the shaking and oscillation during updating the model parameters, thereby improving the performance of the generator and the quality of the generated results. Lastly, we introduce a discriminator to evaluate the consistency between the inpainted image and the original image. The end-to-end experimental results conducted on CelebA, Places2, and Paris StreetView datasets demonstrate that, compared with classical methods, the inpainting results of this model exhibit better visual semantics, and it is capable of finely inpainting details, textures, and local features of images.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

魏赟 ,王璐璐 ,邬开俊 ?,单宏全 ,田彬. EMMA注意力与多尺度融合下的图像修复[J].湖南大学学报:自然科学版,2024,51(12):87~97

复制
历史
  • 在线发布日期: 2024-12-31
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭