+高级检索
基于DBSCAN的改进RANSAC点云平面拟合算法
作者:

Improved RANSAC Point Cloud Plane Fitting Algorithm Based on DBSCAN
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    针对随机采样一致性(random sample consensus,RANSAC)算法对含有噪声的点云数据进行平面拟合时效果不佳和容易产生误识别的问题,对算法进行改进. 通过基于密度的噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法改变RANSAC算法初始点集合的选择策略,并使用主成分分析法(principal component analysis,PCA)计算点云各点法向量,以点到平面距离以及点的法向量与平面法向量夹角两个约束条件同时作为RANSAC算法平面拟合模型内点判定的准则. 采用无噪声与分别含有300个噪声点和500个噪声点的点云仿真数据进行测试,本文算法拟合结果均接近理论值且内点距离标准差分别为1.007×10-8、0.003、0.007,优于RANSAC算法. 采用实际工件点云数据在两种工况场景下进行测试,本文算法拟合平面内点比率相对于传统RANSAC算法分别提高24.7%和24.6%,平面提取完整度及准确率同样优于RANSAC算法. 仿真模拟及实例分析证明了本文算法的有效性.

    Abstract:

    To address the problem of poor point cloud plane fitting effect and easy misidentification of the random sample consensus (RANSAC) algorithm for noisy point cloud data, improvements to the algorithm are necessary. The proposed algorithm employs density-based spatial clustering of applications with noise (DBSCAN) to modify the selection strategy of the initial point set in the RANSAC algorithm and uses principal component analysis (PCA) to compute the normal vectors of each point in the point cloud. Two constraint conditions, the distance from the point to the plane and the angle between the normal vectors of the point and the plane, are simultaneously used as the criteria for determining the points within the RANSAC algorithm model. The point cloud simulation data with no noise and 300 and 500 noisy points are used for testing. The fitting results of the proposed algorithm are all approximate to the theoretical values, and the standard deviations of the inner point distance are 1.007×10-8, 0.003 and 0.007, respectively, better than those of RANSAC algorithm. Using actual workpiece point cloud data for testing in two operating scenarios, the proposed algorithm improves the fitting ratio of in-plane points by 24.7% and 24.6% compared to the traditional RANSAC algorithm, respectively. The completeness and accuracy of plane extraction are also superior to those of the RANSAC algorithm. Simulation and case analysis validate the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

叶锦华 ,林旭敏 ,吴海彬 ?.基于DBSCAN的改进RANSAC点云平面拟合算法[J].湖南大学学报:自然科学版,2025,52(2):76~87

复制
历史
  • 在线发布日期: 2025-03-04
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭