+高级检索
基于改进经验模态分解与BiLSTM神经网络的低矮房屋脉动风压时程预测
作者:

Prediction of Fluctuating Pressure Time Series of Low-rise Buildings Based on Improved Empirical Mode Decomposition and BiLSTM Nueral Networks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态函数,并通过样本熵对其进行重构获得子序列;其次,针对各子序列完成双向长短期记忆网络的构建、训练及预测,并利用贝叶斯优化(BO)算法对神经网络超参数进行优化;最后,基于低矮房屋风洞测压试验数据进行了风荷载预测,验证了学习模型的有效性.研究表明,与传统预测模型(多层感知器、BiLSTM)相比,基于改进经验模态分解与BiLSTM神经网络的预测模型具有较高的预测精度和计算效率,适用于高斯与非高斯风压信号预测.

    Abstract:

    To solve the problem of intermittent missing sensor data in wind pressure measurements, a method for predicting the wind pressure time series on the surface of structures by combining the improved empirical mode decomposition algorithm (IEMD) with bidirectional long short-term memory (BiLSTM) networks is proposed. First of all, intrinsic mode functions (IMFs) are obtained through the adaptive decomposition of wind pressure time series using the IEMD method with soft sifting stopping criterion. The sample entropy is adopted to reconstruct IMFs and obtain subsequences. Then, BiLSTM networks are established and trained with these subsequences, while the prediction is also conducted, in which the Bayesian algorithm is employed to optimize the hyperparameters of neural networks. Finally, a case study of wind load prediction based on the wind tunnel test data of low-rise buildings is conducted to validate the proposed model. The results show that, compared with the traditional prediction models (e.g. multi-layer perceptron, BiLSTM), the prediction model based on IEMD and BiLSTM presents higher accuracy and calculation efficiency, which is capable of predicting Gaussian and non-Gaussian wind pressure signals.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

邱冶 ,袁有明 ,伞冰冰 ?.基于改进经验模态分解与BiLSTM神经网络的低矮房屋脉动风压时程预测[J].湖南大学学报:自然科学版,2025,52(3):82~93

复制
历史
  • 在线发布日期: 2025-03-31
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭