+高级检索
知识迁移引导的空频双域联合去雾网络
作者:

Knowledge Transfer Guided Space Frequency Dual Domain Joint Defogging Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    目前一些基于CNN的方法在去雾方面有着不错的性能,但网络鲁棒性欠佳.这主要归因于雾霾分布复杂和数据集难以收集,导致去雾过程中纹理细节丢失严重并且在小规模数据集上存在严重的过拟合问题.为了解决上述问题,提出了空频联合的双分支结构.上分支捕获更多的纹理细节,利用三级小波变换在频域中获取特征;下分支提升网络泛化能力,采用域迁移方法在空域中提供额外的知识先验,以Res2Net作为该分支的核心部分.最后,本文在NH-HAZE数据集上对模型进行训练,在I-HAZE和NTIRE 2023数据集上进行泛化能力测试.此外,为了保证实验的公平性,本文对所有对比算法也采用NH-HAZE数据集进行训练.实验结果表明,本文网络在细节纹理恢复和泛化能力方面获得了显著提升.

    Abstract:

    The current CNN-based methods exhibit satisfactory performance in fog removal, but their network robustness is compromised due to the intricate haze distribution and challenging dataset collection. Consequently, there is a significant loss of texture details during the fog removal process and severe overfitting issues on small-scale data sets. To address these challenges, we propose a two-branch structure incorporating space-frequency joint techniques. The upper branch focuses on capturing finer texture details by utilizing three-level wavelet transform to extract features in the frequency domain. Meanwhile, the lower branch enhances network generalization by employing domain migration method to incorporate additional prior information from airspace and leveraging Res2Net as its core component. Finally, the proposed model is trained on the NH-HAZE dataset and evaluated for generalization ability using the I-HAZE and NTIRE 2023 datasets. Furthermore, to ensure fairness in comparison experiments, all competing algorithms are also trained using the NH-HAZE dataset. Experimental results demonstrate that our proposed network significantly improves both detail texture recovery capability and generalization performance.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

杨燕 ?,梁皓博 ,林雷 .知识迁移引导的空频双域联合去雾网络[J].湖南大学学报:自然科学版,2025,52(4):16~26

复制
历史
  • 在线发布日期: 2025-04-28
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭