+高级检索
基于多域图神经网络的疾病预测模型
作者:

Disease Prediction Model Based on Multi-domain Graph Neural Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    电子病历数据类型多样以及时序不规则,现有的基于深度学习的方法在特征学习的过程中大多无法同时兼顾对不同类型临床数据间静态关联和就诊记录间动态时序依赖的有效捕获.针对该问题,本文提出了一种基于多域图神经网络的疾病预测模型.该方法首先利用一个结合编码级注意力和时间感知LSTM的时序特征学习模块获得患者每次就诊的初始特征表示.然后,根据就诊序列中不同就诊间的相关性和时间间隔信息分别构建了一个就诊亲和图和一个就诊时序图,并通过图卷积神经网络从图中挖掘就诊记录间的静态语义关联和动态时序依赖.最后,利用一个基于自注意力机制的多域特征融合模块将时序特征和语义关联特征结合起来得到最终的患者融合特征表示,用于患者未来的疾病预测.在两个真实临床数据集上的实验结果表明,本文方法超过其他现有的方法获得了更高的预测准确性.

    Abstract:

    Due to the characteristics of electronic medical records (EMRs), such as the diversity of data types and temporal irregularity inherent, most existing deep learning-based methods cannot simultaneously capture static correlations between different types of clinical data and dynamic temporal dependencies between visits during the feature learning process. To address this issue, this paper proposes a disease prediction model based on multi-domain graph neural network. In this model, a temporal feature learning module that combines code level attention and time aware LSTM is first utilized to obtain the initial feature representation of patient visits. Then, based on the correlation and time interval information between different visits, a visit affinity graph and a visit sequence graph are constructed, and a graph convolutional neural network is used to mine the static and dynamic semantic associations between visit records from these graphs. Finally, a multi-domain feature fusion module based on self-attention mechanism is utilized to combine temporal features and semantic association features to obtain the final patient fusion representation for future disease prediction. The experimental results on two real clinical datasets show that our method outperforms other existing methods and achieves higher prediction accuracy.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

罗熹 ,刘洋 ,安莹 ?.基于多域图神经网络的疾病预测模型[J].湖南大学学报:自然科学版,2025,52(4):124~134

复制
历史
  • 在线发布日期: 2025-04-28
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭