+高级检索
基于位置感应卷积与注意力机制的钢材缺陷检测
作者:

Steel Defect Detection Based on Position-sensitive Convolution and Attention Mechanisms
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    为了提高钢材缺陷检测精度,提出一种基于YOLOv5s的缺陷检测算法YOLOv5s-FNCE.首先,在骨干特征提取网络中加入新型NAMAttention注意力机制,提高对目标的感知和区分能力;并提出新型的C3-Faster,通过减小内存访问和冗余计算更有效地提取特征;在特征融合网络和输出端引入位置卷积CoordConvs,增强目标的语义感知能力和全局感知能力;最后,引入新的损失函数Focal-EIoU,以加快收敛速度,提高回归精度.实验结果表明,YOLOv5s-FNCE算法在钢材表面缺陷数据集上的均值平均精度达到了75.1%,比原始YOLOv5s提高了1.7个百分点,检测速度则提升了20.5%,证明了该算法在钢材缺陷检测中能够有效提升检测速度和检测精度.

    Abstract:

    To improve the accuracy of steel defect detection, a defect detection algorithm YOLOv5s-FNCE based on YOLOv5s is proposed. Firstly, a novel NAMAttention attention mechanism is added to the backbone feature extraction network to improve the perception and differentiation of the target; and a new C3-Faster is proposed to extract the features; the positional convolutional CoordConvs is introduced in the feature fusion network and at the output to enhance the semantic perception ability and global perception ability of the target; and finally, a new loss function Focal-EIoU is introduced to accelerate the convergence speed and improve the regression accuracy. Experimental results show that the mean average accuracy of the YOLOv5s-FNCE algorithm on the steel surface defects dataset reaches 75.1%, which is 1.7% higher than that of the original YOLOv5s, the detection speed is increased by 20.5%, which proves that the algorithm can effectively improve the detection speed and accuracy in steel defect detection.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

解妙霞 ,程照中 ?,李嘉乐 ,李玲 ,贺宁 .基于位置感应卷积与注意力机制的钢材缺陷检测[J].湖南大学学报:自然科学版,2025,52(4):135~148

复制
历史
  • 在线发布日期: 2025-04-28
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭