+高级检索
基于数值分析理论的低复杂度MED算法
作者:
作者单位:

1.吉首大学;2.中南大学

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(62161012,61861019);湖南省教育厅科学研究项目(21A0335);国家级大学生创新创业训练项目(S202010531009,202110531029);吉首大学研究生科研创新项目(Jdy20014)


Low complexity MED algorithm based on numerical analysis theories
Author:
Affiliation:

1.Jishou University;2.Central South University

Fund Project:

National Natural Science Foundation of China(62161012,61861019);Scientific Research Project of Department of Education of Hunan Province(21A0335);National Innovation and Entrepreneurship Training Program for College Students(S202010531009,202110531029);Master Scientific Research Innovation Project of JSU(Jdy20014)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    经典的最大特征值检测(MED)算法在检测相关信号时具有优异的性能。然而,随着信号维度的不断增大,MED算法面临着严重的感知判决量和判决门限计算的效率和实现问题,从而极大地限制了该算法在现代认知通信系统中的进一步应用。为此,提出了一种基于数值分析理论框架的低复杂度MED频谱感知算法。所提算法利用Rayleigh商加速幂法迭代地计算感知判决量,与经典的幂法相比在检测高维信号时具有更快的收敛速度;此外,不同于经典的查表法,新算法基于三次样条插值法快速准确地确定任意给定目标虚警概率所对应的感知判决门限。所提MED算法在保持原有算法检测性能的同时,有效提升了计算效率,降低了算法实现复杂度,其对于高维条件下的频谱感知问题尤其具有吸引力。最后,仿真结果证明了所提算法的有效性。

    Abstract:

    The classical maximum eigenvalue detection (MED) algorithm has excellent performance in detecting correlated signals. However, with the increasing signal dimensionality, the MED algorithm faces serious problems in the calculation efficiency and implementation of test statistic and decision threshold, thus greatly limiting the further application of the algorithm in modern cognitive communication systems. To this end, a low-implementation complexity MED algorithm based on a numerical analysis theoretical framework is proposed. The new algorithm uses the Rayleigh quotient accelerated power method to iteratively compute the test statistic, which has a fast convergence rate in detecting high-dimensional signals compared with the classical power method; meanwhile, different from the classical look-up table method, a threshold calculation method based on the cubic spline interpolation method is proposed, which can quickly determine the decision threshold corresponding to any given target false-alarm probability. The proposed MED algorithm effectively improves the computational efficiency and reduces the complexity of algorithm implementation while maintaining the detection performance of the original algorithm, which is particularly attractive for spectrum sensing problems in high-dimensional conditions. Finally, the simulation results demonstrate the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文
历史
  • 收稿日期: 2021-12-28
  • 最后修改日期: 2022-04-11
  • 录用日期: 2022-04-12
  • 在线发布日期: 2022-05-19
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭