+高级检索
沥青路面压实密度多指标智能预测模型
作者:
作者单位:

福州大学 土木工程学院

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Intelligent compaction density prediction model of asphalt pavement based on multiple indicators
Author:
Affiliation:

School of Civil Engineering,Fuzhou University

Fund Project:

The National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    为提高现有沥青路面压实密度预测模型预测能力,基于厦门翔安机场高速公路上面层施工试验段,选取代表振压过程中谐波比、能量和力学变化的CCV、DMV、VCV以及温度作为监测指标,采用孤立森林算法进行监测指标异常点识别,并基于最小偏二乘回归建立多指标沥青路面压实密度评价模型,对比其与普通多元线性回归拟合能力。结果表明:孤立森林算法可有效识别高维数据异常点,弥补传统方法只能处理一维数据的不足;温度与其他监测指标以及沥青路面密度存在不同程度正相关关系;基于CCV、DMV、VCV的多元回归模型拟合性能优于一元回归模型性能,论证了多指标评价方法可行;最小偏二乘回归可改善自变量间近似共线性对模型权重的影响,解决温度权重与实际物理意义相互颠倒的问题;相比普通多元线性回归,最小偏二乘回归能进一步提高模型拟合程度,模型最终在训练集上的决定系数为0.83,在测试集上的决定系数为0.81,具有良好的沥青路面压实密度预测能力。

    Abstract:

    For improving the predictive ability of existing models predicting the compaction density of asphalt pavement, the test site is created in the upper layer of the Xiang’an Airport highway project in Xiamen. The CCV, DMV and VCV, which represent the change of harmonic ratio, energy, and stiffness respectively, and temperature are chosen as indicators. The isolation forest algorithm is used to detect outliers in indicators. The model for assessing density is established based on the partial least squares regression, and the fitting ability of it and common multiple linear regression methods are compared. The results show that the isolation forest can effectively recognize outliers of high-dimensional data, covering the shortage that traditional methods can only process one-dimensional data. There are different degrees of positive correlation between temperature, other indicators, and asphalt pavement density. The multiple regression model, which is established by CCV, DMV, and VCV, obtains better fitting ability than unitary regression methods, proving the feasibility of multiple indicators. The partial least squares regression can restrain the adverse impact caused by the approximate collinearity between independent variables, correct the incorrect weight of temperature and improve the fitting degree compared with the common multiple linear regression methods. The final determination coefficient of the model on the training set is 0.83, and on the test set is 0.81.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文
历史
  • 收稿日期: 2023-08-11
  • 最后修改日期: 2023-11-25
  • 录用日期: 2023-12-06
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭