摘要
基于扰动状态概念(Disturbed State Concept,DSC),结合Rayleigh分布从微观角度描述桩-土界面荷载渐进性传递特性,建立了基于DSC理论的桩侧及桩端荷载传递模型,给出了模型参数确定方法,并验证了模型的合理性.同时结合桩侧及桩端荷载传递模型,提出了一种分析单桩承载特性的迭代算法并验证其合理性.通过算法计算得到的单桩承载特性与案例实测值有较好的一致性,且可较好地反映侧阻及端阻硬化、软化等特性.变参数分析结果表明,基于DSC理论的桩侧及桩端荷载传递模型对不同土层、不同桩基施工工艺都有好的适用性,可较准确地描述桩-土界面荷载传递特性.
在桩基工程理论分析方法中,常用的有荷载传递
扰动状态概念(Disturbed State Concept,DSC)具有较为完善的理论基础,是一种描述材料一般化特性的本构模拟理论,与其他经典模型相比具有较好的连续性和鲜明的理论性,能从微观角度较好地反映桩-土界面单元的受力扰动特性.基于扰动状态概念,建立单桩荷载传递模型,该模型具有相关参数易于确定和分析桩-土界面硬化、软化行为的优
本文基于扰动状态概念,分析桩-土界面荷载渐进扰动过程,结合Rayleigh分布建立新型桩侧、桩端荷载传递模型,给出模型参数计算方法并分析了模型参数的影响规律,通过与工程案例对比分析,验证本文所提出模型的正确性.本模型可较好地反映桩侧及桩端硬化、软化和非线性等特性.与传统荷载传递模型相比,本文提出的基于DSC理论的荷载传递模型具有参数少、参数取值方法明确、拟合度好等优点.基于提出的桩侧及桩端荷载传递模型,建立一种分析单桩承载特性的迭代算法,并用算例来验证该算法的正确性,该算法可较好地反映侧阻及端阻的破坏特性以及硬化、软化等特性.最后通过相关模型参数研究,分析了不同模型参数对单桩受力特性的影响.
1 桩-土界面荷载渐进性传递扰动机理
岩土材料的扰动状态概念理论最早由Frantziskonis和Desa
(1) |
式中:σ为单元总应力;σi为处于相对完整状态单元应力;σc为处于完全调整状态单元应力;D为扰动因子,其数值介于0~1之间,反映了岩土材料扰动破坏的程度,当D=0时,岩土材料处于相对完整状态,当D=1时,岩土材料处于完全调整状态.

图1 扰动状态概念示意图
Fig.1 Schematic diagram of disturbance state concept
2 基于DSC理论的桩侧荷载传递模型
2.1 基于DSC理论的桩侧荷载传递模型的构建
在外荷载作用前和外荷载较小时,桩-土界面单元几乎全部处于RI状态.当外荷载不断增大,使得桩-土界面发生塑性相对位移时,桩-土界面单元不断随机地从RI状态自我调整到FA状态,此时为扰动过渡状态.随着外荷载的进一步增大,桩-土界面单元全部调整到FA状态.桩侧扰动因子Dq反映了桩-土界面单元从RI状态到FA状态的调整过程.基于DSC理论,桩-土界面荷载传递模型可表示为:
(2) |
式中:τ为桩侧摩阻力;τi为处于相对完整状态的桩-土界面单元应力;τc为处于完全调整状态的桩-土界面单元应力.
假定处于RI状态的桩-土界面单元抗剪强度符合线弹性理论,本文采用佐藤悟双折线模型的理想线弹性部分计
(3) |
式中:kq为RI状态下桩-土界面单元剪切系数;s为桩-土相对位移.
随着外荷载不断增大,处于RI状态的桩-土界面单元不断转化为FA状态,此时可认为桩-土界面单元达到极限状态,其承受的应力可看作残余强度.现假定其符合理想塑性模型,桩侧摩阻力残余强度可表示
(4) |
式中:τc可由桩基静载试验实测结果直接获得;Rs为侧阻破坏比,定义为桩侧摩阻力残余强度τc与桩侧极限摩阻力τsu之比,取0.83~0.9
桩-土界面出现塑性相对位移时,界面单元开始扰动.桩侧扰动因子Dq可反映界面单元的扰动程度,可定义为桩-土界面已破损单元数量Nq与总界面单元数量N之比:
(5) |
桩-土界面的力学及变形特性十分复杂多变,受荷后桩-土界面破坏是一个渐变的过程,传统的桩基DSC荷载传递模型基于非均匀材料的均匀化理论,假定各单元强度符合Weibull分布进行计
(6) |
式中:δ为Rayleigh分布参数,与桩-土界面扰动状态特性有关,为简化分析过程,后续皆以
当桩-土相对位移达到s时,界面破损单元数量为:
(7) |
将
(8) |
将
(9) |
当桩-土界面的相对位移s达到ssu时,桩侧摩阻力达到极限值τsu,通过对
(10) |
令dτ/ds=0,通过理论推导得到ssu的表达式为:
(11) |
经过整理得到
(12) |
将s=0代入
(13) |
将
将
(14) |
参数
众所周知,桩-土界面力学及变形特性十分复杂,ssu的数值易受施工方法、桩基类型、土层性质和加载速率等因素影响,而且即使是同一土层,其含水率、内摩擦角和埋深等因素不同,ssu的值也会不同.目前ssu的数值多采用试验获得.由已有的钻孔灌注桩现场试验结果可
桩侧极限摩阻力τsu可由
(15) |
式中:为土的重度;z为桩侧土体深度;η为桩-土界面的摩擦角,η取决于桩身和周围土壤的性质,可以通过剪切试验合理确定,在实际应用中,可通过η=arctan[sinφcosφ/(1+si
2.2 基于DSC理论的桩侧荷载传递模型参数分析
由

(a) kq

(b)

(c) τc
图2 参数kq、
Fig.2 Influence of the parameters, kq,
由
由
由
2.3 基于DSC理论的桩侧荷载传递模型算例验证
为研究桩-土界面荷载传递过程,验证本文提出的基于DSC理论桩侧荷载传递模型的正确性,拟采用文献[
文献 | 桩号 | τsu/kPa | ssu/mm | τc/kPa | kq/(kPa∙m | |
---|---|---|---|---|---|---|
Bohn | IFSTTAR 35B | 115.3 | 4.3 | 71.7 | 40.4 | 10.859 |
IFSTTAR 40 | 112.2 | 15.7 | 84.5 | 10.4 | 118.926 | |
Zhang | S1 | 117.4 | 9.1 | 101.2 | 17.9 | 31.362 |
S6 | 93.7 | 12.2 | 80.9 | 10.6 | 55.729 | |
Zhou | PT1 | 7.7 | 8.9 | 7.5 | 1.1 | 18.528 |
PT2 | 9.1 | 11.2 | 8.8 | 1.02 | 28.813 | |
王卫东 | SYZA02 | 87.3 | 6.8 | 60.3 | 19.01 | 24.670 |
由

(a) 试桩IFSTTAR 35B和IFSTTAR 40

(b) 试桩S1和S6

(c) 试桩PT1和PT2

(d) 试桩SYZA02
图3 现场实测值与桩侧荷载传递模型计算值对比
Fig.3 Comparison between the measured values in the field and the calculated values of pile side load transfer model
3 基于DSC理论的桩端荷载传递模型
3.1 基于DSC理论的桩端荷载传递模型的构建
基于DSC理论的桩端荷载传递模型与上述桩侧模型创建过程类似,在施加外荷载之前,桩端土单元几乎全部处于RI状态;随着外荷载不断增加,桩端土单元不断从RI状态随机调整到FA状态;当外荷载增大到一定程度时,桩端土单元几乎全部处于FA状态.桩端扰动因子Dp反映桩端土单元从RI状态到FA状态的自我调整过程.基于DSC理论的桩端荷载传递模型基本表达式为:
(16) |
式中:τb为桩端阻力;τbi为处于相对完整状态的桩端土单元应力;τbc为处于完全调整状态的桩端土单元应力;Dp为桩端土单元的扰动因子.
假定处于RI状态桩端土单元抗剪强度符合线弹性理论,采用双折线模型的线弹性部分进行计算:
(17) |
式中:kp为RI状态下桩端土单元的抗压刚度系数;sb为桩端位移.
随着外荷载的增加,处于RI状态的桩端土单元最终全部调整为FA状态.对于桩身质量良好且桩端持力层已破坏的单桩而言,桩端阻力达到峰值后会逐渐减小至残余强度,即桩端的τ-s曲线会出现软化现
(18) |
式中:τbu为极限桩端阻力;Rb为端阻破坏比,定义为桩端阻力残余强度与极限桩端阻力之比,根据其他学者研究成果,本文取0.85~0.9
基于DSC理论桩端荷载传递模型的扰动函数的确定与桩侧类似,定义桩端土扰动因子Dp为:
(19) |
式中:Npb为桩端土的已破损单元数量;Nb为桩端土的单元总数量;δb为Rayleigh分布参数,与桩端土界面的扰动特性有关.
将
(20) |
与DSC桩侧荷载传递模型参数分析类似,为节省篇幅,以下仅给出桩端荷载传递模型参数分析的关键公式:
(21) |
(22) |
(23) |
(24) |
(25) |
sbu易受施工方法、桩基类型等因素影响,因此,sbu的值多通过现场试验结果确定,由现场单桩破坏性试验可知,桩端位于卵石层时发生破坏,取值范围为10~17 m
桩端极限摩阻力的值可由下式确定:
(26) |
(27) |
(28) |
(29) |
式中:c为土层黏聚力;Nc为反映土的黏聚力c的无量纲系数;Nq为反映桩端平面处侧边土压力影响的无量纲系数,两者都与土的内摩擦角φ有关;为桩端平面处侧面的平均有效压力;ψ为桩端土破坏中桩端压密核边界与水平面的夹角.
3.2 基于DSC理论的桩端荷载传递模型算例验证
为验证本文所提出的基于DSC理论桩端荷载传递模型的正确性,选取了4根破坏性钻坑灌注单桩现场试验数据进行分
文献 | 桩号 | τbu/kPa | sbu/mm | τbc /kPa | kp/(kPa∙m | /m |
---|---|---|---|---|---|---|
Zhang | TS2 | 7 847.5 | 16.2 | 6 336.6 | 688.2 | 113.279 |
TS3 | 6 834.4 | 16.3 | 5 179.8 | 607.5 | 126.709 | |
Zhang | TS3 | 7 818.6 | 17.3 | 6 250.3 | 644.3 | 131.464 |
TS4 | 8 530.1 | 14.0 | 7 353.9 | 842.4 | 73.784 |

(a) 试桩TS2和TS3

(b) 试桩TS3和TS4
图4 现场实测值与桩端荷载传递模型计算值对比
Fig.4 Comparison between the measured values in the field and the calculated values of load transfer model at pile end
4 基于DSC理论考虑桩-土体系渐进破坏的单桩承载特性计算方法
根据本文提出的基于DSC理论,考虑Rayleigh分布的桩侧及桩端荷载传递模型,结合荷载传递法可分析层状地基中考虑桩-土体系渐进破坏的单桩荷载-沉降特性,提出了预测单桩响应的迭代计算方法.计算过程可参考文献[
5 荷载传递模型单桩承载特性案例验证
5.1 案例一
选取3根破坏性单桩(TS1、TS2、TS3)的现场 试验结
土层 | 厚度/m | kq /(kPa∙m | τc /kPa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TS1 | TS2 | TS3 | TS1 | TS2 | TS3 | TS1 | TS2 | TS3 | TS1 | TS2 | TS3 | |
粉质黏土 | 1.7 | 1.6 | 2.5 | 20.0 | 13.7 | 13.5 | 28.7 | 30.0 | 27.5 | 6.676 | 14.86 | 19.07 |
粉质砂土 | 1.9 | 3.8 | 3.1 | 20.0 | 13.7 | 13.5 | 28.7 | 30.0 | 27.5 | 6.676 | 14.86 | 19.07 |
粉质砂土 | 4.4 | 4.6 | 3.2 | 3.9 | 6.6 | 2.5 | 30.0 | 32.0 | 31.0 | 117.2 | 67.32 | 513.3 |
粉质砂土 | 3.5 | — | 2.3 | 11.3 | — | 15.3 | 26.7 | — | 26.7 | 16.43 | — | 19.77 |
粉质砂土含粉土 | 4.6 | 6.8 | 5.1 | 4. 2 | 3.1 | 2.5 | 36.4 | 35.9 | 34.3 | 205.7 | 388.8 | 710.6 |
粉质黏土 | 0.7 | — | 0.6 | 2.0 | — | 0.75 | 19.6 | — | 20.7 | 81.94 | — | 752.7 |
砂质粉土 | 7.1 | 6.2 | 5.6 | 2.0 | 1.3 | 0.75 | 19.6 | 19.6 | 20.7 | 81.94 | 214.6 | 752.7 |
砂质粉土 | 2.2 | 1.6 | 0.8 | 3.8 | 3.7 | 4.2 | 51.9 | 51.9 | 51.9 | 223.0 | 214.4 | 253.3 |
砂质粉土 | 1.5 | 5.2 | 3.7 | 6.8 | 4.7 | 2.3 | 50.8 | 58.9 | 55.2 | 73.69 | 194.3 | 670.2 |
砂质粉土 | 2.8 | — | 3.6 | 9.5 | — | 2.8 | 57.2 | — | 54.4 | 62.87 | — | 692.1 |
粉质黏土含砂 | 2.1 | 1.4 | 1.9 | 9.5 | 6.5 | 2.8 | 57.2 | 55.8 | 54.4 | 62.87 | 285.3 | 692.1 |
细砂 | 1.3 | 5.9 | 0.7 | 8.7 | 8.7 | 8.7 | 66.7 | 66.7 | 66.7 | 237.0 | 237.0 | 237.0 |
中砂 | 3.3 | — | 2.1 | 17.4 | — | 3.6 | 80.9 | — | 57.8 | 47.42 | — | 598.8 |
细砂 | 0.9 | — | 0.9 | 23.4 | — | 6.8 | 104.8 | — | 83.3 | 43.12 | — | 282.5 |
中砂 | 2.0 | 2.0 | 8.1 | 23.4 | 11.5 | 6.8 | 104.8 | 115.6 | 83.3 | 43.12 | 117.5 | 282.5 |
中砂 | — | — | 1.0 | — | — | 8.9 | — | — | 90.1 | — | — | 222.4 |

图5 案例一单桩桩顶荷载-沉降曲线的实测值与计算值对比
Fig.5 Comparisons of calculated and measured pile head load-settlement curves for single piles in case 1
5.2 案例二
选取在中密度砂土中进行的封闭钢管桩试

图6 案例二单桩桩顶荷载-沉降曲线的实测值与计算值对比
Fig.6 Comparisons of calculated and measured pile head load-settlement curves for a single pile in case 2
由
6 参数分析
本文设计了以下算例来分析参数Rs、Rb、ssu和sbu对单桩桩顶荷载-沉降曲线的影响.假定钢管桩桩长为20 m,桩径为300 mm,桩身弹性模量为210 GPa,在桩长范围内桩侧极限摩阻为45 kPa,桩端极限阻力为4 300 kPa.参数Rs、Rb、ssu和sbu对单桩桩顶荷载-沉降曲线的影响如

(a) Rs

(b) Rb

(c) ssu

(d) sbu
图7 参数Rs、Rb、ssu和sbu对单桩桩顶荷载-沉降曲线的影响
Fig.7 Influence of the parameters Rs, Rb, ssu and sbu on the single pile response
由
由
7 结 论
本文基于扰动状态概念(DSC),认为桩-土界面单元处于相对完整状态(RI)时符合线弹性理论,处于完全调整状态(FA)时符合弹塑性理论.假定桩-土界面单元强度符合Rayleigh分布并用由此得到的扰动函数反映,最终建立基于Rayleigh分布和DSC理论的桩-土界面荷载传递模型,该模型参数较少且确定方法简单.在此基础上提出单桩沉降迭代计算方法,将计算结果与工程检测情况对比,获得了以下结论:
1)通过本模型计算得到的τ-s曲线与案例实测值对比分析可知,本模型可较好地反映桩侧及桩端硬化、软化和非线性等特性,因此本模型可较真实地反映桩侧及桩端的桩-土界面荷载传递特性.
2)基于本文提出的DSC理论桩侧及桩端荷载传递模型,建立了一种分析单桩承载特性的迭代算法,通过与案例对比分析表明,该迭代算法得到的桩顶荷载-沉降曲线与案例实测值具有较好的一致性,因此该算法可较好地反映侧阻及端阻的破坏特性以及硬化、软化等特性.
3)通过变参数分析结果可知,实际工程中,Rs和Rb值对单桩桩顶荷载-沉降曲线影响很小,几乎可以忽略.ssu和sbu值对单桩桩顶荷载-沉降曲线的影响较大,实际工程中应根据理论公式以及土层参数合理确定ssu和sbu值.
参考文献
陈昌富,陈苏淑,朱世民,等.柔性基础下等芯型水泥土复合桩荷载传递特性分析[J].湖南大学学报(自然科学版),2023,50(1):152-160. [百度学术]
CHEN C F,CHEN S S,ZHU S M,et al.Analysis on load transfer behaviors of equal-core stiffened deep mixed pile under flexible foundation[J].Journal of Hunan University (Natural Sciences),2023,50(1):152-160.(in Chinese) [百度学术]
江杰,陈秋怡,欧孝夺,等.考虑桩侧土体软化的能量桩热力响应分析[J].岩石力学与工程学报,2023,42(9):2295-2305. [百度学术]
JIANG J,CHEN Q Y,OU X D,et al. Analysis of thermal response of energy piles considering softening of pile-side soil[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2295-2305.(in Chinese) [百度学术]
邹新军,徐洞斌,王亚雄,等.考虑地基土剪切模量非线性分布的基桩受扭分析[J].岩石力学与工程学报,2015,34(6):1267-1275. [百度学术]
ZOU X J,XU D B,WANG Y X,et al.Analysis of torsional piles considering nonlinear distribution of shear modulus of subsoil along depth[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1267-1275.(in Chinese) [百度学术]
张浩,刘维正,何利超,等.引扩孔灌浆扩体预制桩竖向承载变形的简化计算[J].铁道科学与工程学报,2022,19(1):120-128. [百度学术]
ZHANG H,LIU W Z,HE L C,et al.Simplified calculation method for vertical bearing deformation of pre-bored grouting reamed precast pile[J].Journal of Railway Science and Engineering,2022,19(1):120-128.(in Chinese) [百度学术]
毛坚强,蒋媛.基于单桩静载试验结果的群桩基础沉降计算方法[J].铁道学报,2017,39(1):97-103. [百度学术]
MAO J Q,JIANG Y.Settlement calculation of pile group foundation based on results of vertical static load test on single pile[J].Journal of the China Railway Society,2017,39(1):97-103.(in Chinese) [百度学术]
木林隆,黄茂松,王卫东.分层地基中隧道开挖对邻近刚性桩筏基础竖向影响分析[J].岩土工程学报,2011,33(7):1082-1090. [百度学术]
MU L L,HUANG M S,WANG W D.Vertical responses of capped pile foundations to ground movements induced by tunneling[J].Chinese Journal of Geotechnical Engineering,2011,33(7):1082-1090.(in Chinese) [百度学术]
袁涌筌,赵明华,杨超炜,等.循环荷载下筋箍碎石桩复合地基动力特性数值分析[J].湖南大学学报(自然科学版),2022,49(11):198-205. [百度学术]
YUAN Y Q,ZHAO M H,YANG C W,et al.Numerical analyses on dynamic characteristics of composite foundations with encased stone piles under cyclic loading[J].Journal of Hunan University (Natural Sciences),2022,49(11):198-205.(in Chinese) [百度学术]
ZHANG X Y,FATAHI B.Assessing axial load transfer mechanism of open-ended tubular piles penetrating in weak rocks using three-dimensional discrete element method[J].Computers and Geotechnics,2021,137:104267. [百度学术]
王宗琴,张云鹏,田乙,等.考虑固结的新近吹填场地桩侧负摩阻力分布特性[J].哈尔滨工业大学学报,2022,54(8):108-116. [百度学术]
WANG Z Q,ZHANG Y P,TIAN Y,et al.Distribution characteristics of negative skin friction on piles installed at dredger fill sites considering consolidation effect[J].Journal of Harbin Institute of Technology,2022,54(8):108-116.(in Chinese) [百度学术]
ZHANG Q Q,ZHANG Z M.A simplified nonlinear approach for single pile settlement analysis[J].Canadian Geotechnical Journal,2012,49(11):1256-1266. [百度学术]
刘晓华,韦彬,张鹏鹏,等.考虑桩侧初始剪应力的层状地基中单桩沉降计算简化解析[J].铁道科学与工程学报,2020,17(4):875-881. [百度学术]
LIU X H,WEI B,ZHANG P P,et al.Simplified analytical for settlement calculation of single pile in layered soil considering initial shear stress of pile side[J].Journal of Railway Science and Engineering,2020,17(4):875-881.(in Chinese) [百度学术]
薛凤忠,田娇,王昭空,等.考虑桩-岩接触面流变的桩岩联合受力性能研究[J].岩土力学,2014,35(5):1438-1444. [百度学术]
XUE F Z,TIAN J,WANG Z K,et al.Research on pile-rock joint mechanical properties considering pile-rock interface rheology[J].Rock and Soil Mechanics,2014,35(5):1438-1444.(in Chinese) [百度学术]
BOHN C,LOPES DOS SANTOS A,FRANK R.Development of axial pile load transfer curves based on instrumented load tests[J].Journal of Geotechnical and Geoenvironmental Engineering,2017,143(1):04016081. [百度学术]
ZHANG Q Q,LI S C,LI L P.Field study on the behavior of destructive and non-destructive piles under compression[J].Marine Georesources & Geotechnology,2014,32(1):18-37. [百度学术]
符勇,曹吉鸣,楼晓明,等.桩周土性对单桩承载性状影响的模拟研究[J].岩土工程学报,2011,33(增刊1):503-509. [百度学术]
FU Y,CAO J M,LOU X M,et al.Simulations of influences of properties of soil around piles on their bearing behaviors[J].Chinese Journal of Geotechnical Engineering,2011,33(Sup.1):503-509.(in Chinese) [百度学术]
LIU Q J,YANG L D,WU J.New model of load transfer function for pile analysis based on disturbed state model[J].Frontiers of Architecture and Civil Engineering in China,2007,1(4):443-447. [百度学术]
HUANG M, ZHANG B Q, CHEN F Q,et al. A new incremental load transfer model of pile-soil interaction based on disturbed state concept[J]. Rock and Soil Mechanics, 2017, 38(Sup.1): 167-172. [百度学术]
黄明,江松,许德祥,等.超大直径变截面空心桩的荷载传递特征与理论模型[J].岩石力学与工程学报,2018,37(10):2370-2383. [百度学术]
HUANG M,JIANG S,XU D X,et al.Load transfer mechanism and theoretical model of step tapered hollow pile with huge diameter[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(10):2370-2383.(in Chinese) [百度学术]
贾羽,张家生,张飞,等.基于扰动状态概念的桩-土接触面荷载传递模型[J].东北大学学报(自然科学版),2021,42(12):1775-1781. [百度学术]
JIA Y,ZHANG J S,ZHANG F,et al.Load transfer model of pile-soil interface based on the disturbed state concept[J].Journal of Northeastern University (Natural Science),2021,42(12):1775-1781.(in Chinese) [百度学术]
CHEN Z G,ZHANG Q Q,XING Y C,et al.Analysis of the response of a single pile using the disturbance state concept theory[J].International Journal of Geomechanics,2022,22(10):04022180. [百度学术]
FRANTZISKONIS G,DESAI C S.Elastoplastic model with damage for strain softening geomaterials[J].Acta Mechanica,1987,68(3):151-170. [百度学术]
洪鑫,雷国辉,施建勇.双线性荷载传递函数的单桩荷载沉降关系统一解[J].岩土工程学报,2004,26(3):428-431. [百度学术]
HONG X,LEI G H,SHI J Y.Unified load-settlement solution of single piles based on bilinear load transfer[J].Chinese Journal of Geotechnical Engineering,2004,26(3):428-431.(in Chinese) [百度学术]
林春金,张乾青,梁发云,等.考虑桩-土体系渐进破坏的单桩承载特性研究[J].岩土力学,2014,35(4):1131-1140. [百度学术]
LIN C J,ZHANG Q Q,LIANG F Y,et al.Analysis of bearing behavior of a single pile considering progressive failure of pile-soil system[J].Rock and Soil Mechanics,2014,35(4):1131-1140.(in Chinese) [百度学术]
ZHANG Q Q,ZHANG Z M.Simplified calculation approach for settlement of single pile and pile groups[J].Journal of Computing in Civil Engineering,2012,26(6):750-758. [百度学术]
ZHANG Z M,ZHANG Q Q,YU F.A destructive field study on the behavior of piles under tension and compression[J].Journal of Zhejiang University:Science A,2011,12(4):291-300. [百度学术]
CHO J,LEE J H,JEONG S,et al.The settlement behavior of piled raft in clay soils[J].Ocean Engineering,2012,53:153-163. [百度学术]
ZHANG Q Q,LIU S W,FENG R F,et al.Finite element prediction on the response of non-uniformly arranged pile groups considering progressive failure of pile-soil system[J].Frontiers of Structural and Civil Engineering,2020,14(4):961-982. [百度学术]
ZHANG Q Q, LI S C, LIANG F Y, et al. Simplified method for settlement prediction of single pile and pile group using a hyperbolic model[J]. Journal of Civil Engineering, 2014, 12(2): 179-192. [百度学术]
ZHOU J J,GONG X N,WANG K H,et al.Testing and modeling the behavior of pre-bored grouting planted piles under compression and tension[J].Acta Geotechnica,2017,12(5):1061-1075. [百度学术]
王卫东,李永辉,吴江斌.上海中心大厦大直径超长灌注桩现场试验研究[J].岩土工程学报,2011,33(12):1817-1826. [百度学术]
WANG W D,LI Y H,WU J B.Field loading tests on large-diameter and super-long bored piles of Shanghai Center Tower[J].Chinese Journal of Geotechnical Engineering,2011,33(12):1817-1826.(in Chinese) [百度学术]
ZHANG Q Q,ZHANG Z M.Complete load transfer behavior of base-grouted bored piles[J].Journal of Central South University,2012,19(7):2037-2046. [百度学术]
BRIAUD J L, TUCKER L M, NG E. Axially loaded 5 pile group and single pile in sand[C]// Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering. Rio de Janeiro: A.A. Balkema, 1989:1121-1124. [百度学术]
CASTELLI F,MAUGERI M.Simplified nonlinear analysis for settlement prediction of pile groups[J].Journal of Geotechnical and Geoenvironmental Engineering,2002,128(1):76-84. [百度学术]