摘要
目前,关于含加固物的边坡三维大变形的分析研究极为匮乏. 本文利用物质点法构建了抗滑桩加固边坡三维数值模型,分析了抗滑桩加固条件下边坡大变形破坏模式,探讨了抗滑桩长度、布设位置以及布设间距对边坡大变形破坏的影响. 结果表明,抗滑桩布设于坡脚时,抗滑桩上方土体易发生局部破坏并产生越顶滑移,桩长增加会缩减塑性区范围,但会加剧土体浅层滑动,增大滑移范围;抗滑桩布设于坡中时,边坡破坏后的位移量最小,表现出良好的加固效果,但当桩长与潜在滑动面深度大致相同时,桩体的存在可能会导致边坡破坏后的滑移距离更远;桩间距的增加会引起桩间土的塑性流动;当抗滑桩布设于坡顶时,抗滑桩下方土体易发生脱开滑移,加固效果较差.
抗滑桩因具有加固效果突出、施工扰动小以及布置灵活等优点,在边坡防护中得到广泛应用. 目前,针对抗滑桩-边坡体系的物理评价方法主要可分为3类. 第一类是基于极限平衡法对抗滑桩-边坡稳定性进行理论分析,这类方法概念清晰、使用方便,但无法考虑边坡与抗滑桩的相互作
彭文哲
近年来,无网格法(Mesh-free methods)的发展为岩土大变形问题分析提供了有力工具. 无网格法无须依赖网格对介质信息的近似,而是在任意分布的节点处构造插值函数离散控制方程进行求
本文依托Anura3D平台(www.anura3d.com)建立抗滑桩加固边坡三维物质点模型. Anura3D采用了节点混合离散技
1 物质点法原理
物质点法是由有限元法发展而来的无网格方
(1) |
(2) |
式中:ρ为介质密度;v为速度;a为加速度;σ为对称应力张量;b为体力,如重力. 为求解方便,将
(3) |
式中:Ω为研究对象的积分域;ω为测试函数,在积分域Ω边界处取值为0;∂Ωσ为面力
将连续介质离散为物质点,
(4) |
式中:mp为物质点p的质量;δ为Dirac Delta函数;Np为介质离散的物质点数;x为物体介质中任意一点的空间位置;xp为物质点p当前的空间位置. 将
(5) |
式中:h为边界层厚度.
背景网格与物质点上的状态变量基于形函数进行相互映射:
(6) |
式中:Ng为背景网格的结点总数;Ni()为节点i在物质点p上的形函数,表达为获取节点i信息时的加权系数;
(7) |
式中:Mi为节点i的质量矩阵,
物质点法数值求解采用显式积分算法,主要计算过程可分为4步:1)离散连续介质获得物质点,通过形函数将物质点信息映射到背景网格节点上;2)在网格节点上求解动量守恒方程,即
2 抗滑桩加固边坡物质点模型
2.1 模型设置
为提高数值分析效率,采用Cai

图1 抗滑桩加固边坡三维半无限对称模型
Fig.1 Three-dimensional semi-infinite symmetric model of a slope with anti-slide piles
基于Anura3D建立抗滑桩加固边坡的三维物质点模型,如

图2 抗滑桩加固边坡三维物质点模型
Fig.2 Three-dimensional material point model of a slope with anti-slide piles
抗滑桩加固边坡通常处于稳定状态. 为模拟抗滑桩加固条件下边坡大变形破坏,采用强度折减的方式,将土体强度设置为残余强度. 参考超固结黏土的残余强
材料 | Gs | E/MPa | υ | c/kPa | φ/(°) | Ψ/(°) |
---|---|---|---|---|---|---|
土 | 2.7 | 10 | 0.3 | 1 | 18 | 0 |
桩 | 2.4 | 3 000 | 0.2 | — | — | — |
注: Gs为比重;E为杨氏模量;υ为泊松比;c为黏聚力;φ为内摩擦角;Ψ为剪胀角.
由于桩土系统破坏时桩土间相对位移通常较小,考虑桩土间接触模式为非滑动接触. 如引言所述,物质点法可以自动处理不同物体间的非滑动接触问
2.2 模型验证
目前关于抗滑桩加固边坡大变形分析的研究十分匮乏,难以直接获取相关模型试验或工程案例对本文建立的数值模型进行验证. 由于有限元法在工程领域被广泛认为具有较高的分析精
参照文献[

(a) S/W=4(Anura3D,最大位移=0.88 m)

(b) S/W=6(Anura3D,最大位移=2.10 m)

(c) S/W=4(Flac3D,最大位移=0.76 m)

(d) S/W=6(Flac3D,最大位移=1.91 m)
图3 抗滑桩加固边坡的物质点模型与有限元模型分析结果对比
Fig.3 Comparison between material point method and finite element method of a slope with anti-slide piles
3 抗滑桩加固边坡大变形破坏分析
过去有限元分析研
抗滑桩参数 | Lx/m | S/W | L/m |
---|---|---|---|
取值 | 2(坡脚) | 2 | 2 |
5(坡中) | 4 | 4 | |
8(坡顶) | 6 | 6 |
注: Lx为桩中心距坡脚的水平距离;S/W为桩间距与桩径的比值;L为桩长.
以往大变形分析中通常采用位移阈值作为边坡破坏判
3.1 未加固边坡破坏分析
首先对未加固边坡的破坏情况进行分析. 图4(a)(b)分别展示了未加固边坡的剪切应变与位移分布情况.可以看到,边坡在自重作用下发生了整体剪切破坏,形成一条贯通的圆弧形滑动面,滑面深度约为4 m;坡脚处剪切带发育最为明显,坡面土体的最大位移约为4.0 m.
3.2 抗滑桩位于坡脚处边坡破坏分析

图4 未加固边坡失稳后的剪切应变与位移分布
Fig.4 Distribution of shear strain and displacement of
(a)剪切应变 (b)位移
slope failure without reinforcement

(a) T=2 s时的位移
(b) T=5 s时的位移

(c) T=7 s时的位移
(d) T=12 s时的位移
图5 边坡越顶破坏的位移演化(Lx=2 m,S/W=6,L=6 m)
Fig.5 Displacement evolution of overtopping of the slope failure (Lx=2 m, S/W=6, L=6 m)
当桩间距与桩径比值固定(S/W=6)时,

(a) L=2 m时的剪切应变
(b) L=2 m时的位移

(c) L=4 m时的剪切应变
(d) L=4 m时的位移
图6 桩长对边坡越顶破坏的影响(Lx=2 m,S/W=6)
Fig.6 Effect of the pile length on overtopping of the slope failure (Lx=2 m, S/W=6)
3.3 抗滑桩位于坡中处边坡破坏分析

(a) L=2 m时的剪切应变
(b) L=2 m时的位移

(c) L=4 m时的剪切应变
(d) L=4 m时的位移

(e) L=6 m时的剪切应变
(f) L=6 m时的位移
图7 抗滑桩位于坡中处且桩间距较小时桩长对边坡破坏后剪切应变与位移影响(Lx=5 m,S/W=2)
Fig.7 Effect of the pile length on the shear strain and
displacement of slope failure when the anti-slide piles

(a) T=1 s时的位移
(b) T=3 s时的位移

(c) T=5 s时的位移
(d) T=10 s时的位移
图8 抗滑桩位于坡中处且桩间距较大时桩间土塑性流动
Fig.8 Displacement evolution of plastic flow of soil between piles when the anti-slide piles are located in the middle of the slope and the pile spacing is large (S/W=6, Lx=5 m, L=6 m)
位移演化(S/W=6,Lx=5 m,L=6 m)
are located in the middle of the slope and the pile spacing is small (Lx=5 m, S/W=2)

(a) T=2 s时的剪切应变
(b) T=4 s时的剪切应变

(c) T=6 s时的剪切应变
(d) T=12 s时的剪切应变
图9 桩长与滑面深度一致时边坡剪切应变演化
Fig.9 Slope shear strain evolution when pile length coincides with slip surface depth (Lx=5 m, S/W=6, L=4 m)
(Lx=5 m,S/W=6,L=4 m)

(a) T=2 s时的位移
(b) T=4 s时的位移

(c) T=6 s时的位移
(d) T=12 s时的位移
图10 桩长与滑面深度一致时边坡位移演化
Fig.10 Slope displacement strain evolution when pile length
(Lx=5 m,S/W=6,L=4 m)
;coincides with slip surface depth (Lx=5 m, S/W=6, L=4 m)
3.4 抗滑桩位于坡顶处边坡破坏分析

(a) L=2 m时的剪切应变
(b) L=2 m时的位移

(c) L=4 m时的剪切应变
(d) L=4 m时的位移

(e) L=6 m时的剪切应变
(f) L=6 m时的位移
图11 抗滑桩位于坡顶(Lx=8 m)且桩间距较小时(S/W=2),
Fig.11 Effect of the pile length on the shear strain and displacement of slope failure when the anti-slide piles are located on the slope crest (Lx=8 m) and the pile spacing is small (S/W=2)
不同桩长对边坡破坏后剪切应变与位移的影响

(a) T=1 s时的位移
(b) T=3 s时的位移

(c) T=5 s时的位移
(d) T=10 s时的位移
图12 抗滑桩位于坡顶且桩间距较大时桩间土塑性流动
Fig.12 Displacement evolution of plastic flow of soil between piles as the pile is located on the slope crest and the pile spacing is large (S/W=6, Lx=8 m, L=6 m)
位移演化(S/W=6,Lx=8 m,L=6 m)
3.5 抗滑桩-边坡潜在大变形模式总结
抗滑桩参数 | 最大位移/m | 潜在大变形模式 | ||
---|---|---|---|---|
未加固 | 4.00 | 整体深层破坏 | ||
坡脚(Lx=2 m) | S/W=2 | L=2 m | 5.63 | 桩后土体越顶滑移;桩长增加加剧非稳定土体的浅层破坏,诱发远距离滑移 |
L=4 m | 6.35 | |||
L=6 m | 8.50 | |||
S/W=4 | L=2 m | 5.04 | ||
L=4 m | 5.17 | |||
L=6 m | 5.23 | |||
S/W=6 | L=2 m | 3.66 | ||
L=4 m | 5.21 | |||
L=6 m | 5.64 | |||
坡中(Lx=5 m) | S/W=2 | L=2 m | 1.1 | 随桩长增加,由整体深层破坏转变为桩前后局部浅层破坏 |
L=4 m | 0.63 | |||
L=6 m | 0.79 | |||
S/W=4 | L=2 m | 1.50 | ||
L=4 m | 0.84 | |||
L=6 m | 0.88 | |||
S/W=6 | L=2 m | 2.40 | 整体深层破坏 | |
L=4 m | 3.60 | 桩间土塑性流动(桩长与滑面深度一致诱发远距离滑移) | ||
L=6 m | 2.10 | |||
坡顶(Lx=8 m) | S/W=2 | L=2 m | 2.88 | 随桩长增加,由整体深层破坏转变为桩前土脱开浅层破坏 |
L=4 m | 2.29 | |||
L=6 m | 2.50 | |||
S/W=4 | L=2 m | 3.60 | ||
L=4 m | 2.70 | |||
L=6 m | 2.62 | |||
S/W=6 | L=2 m | 4.12 | 桩间土塑性流动 | |
L=4 m | 3.54 | |||
L=6 m | 3.74 |
4 抗滑桩参数敏感性分析
4.1 桩位对边坡最大位移的影响
为直观量化不同桩位抗滑桩的加固效果,

图13 桩位对边坡最大位移的影响
Fig.13 Effect of pile location on maximum slope displacement
4.2 桩长对边坡最大位移的影响
以坡中为例,

图14 桩长对边坡最大位移的影响
Fig.14 Effect of pile length on maximum slope displacement
4.3 桩间距对边坡最大位移的影响
同样以坡中为例,分析不同桩长条件下桩间距对边坡最大位移的影响,结果如

图15 桩间距对边坡最大位移的影响
Fig.15 Effect of pile length on maximum slope displacement
5 结 论
Anura3D为建立抗滑桩加固边坡三维物质点模型提供了有力工具,有效改善了三维数值分析不稳定问题. 本文基于建立的三维物质点模型探明了抗滑桩加固边坡破坏大变形模式,揭示了桩位、桩长和桩间距对抗滑桩加固边坡破坏大变形的影响,得到如下主要结论:
1)抗滑桩位于坡脚或坡顶附近时难以对边坡滑动面进行有效加固,会使边坡破坏后产生更远的浅表滑移,但桩靠近坡顶处能对高势能易滑动土体进行拦挡,其加固效果略优于坡脚.
2)桩长变化影响边坡破坏后大变形特性的演变. 随着桩长增加,边坡破坏模式由深层转动转变为浅表滑移;边坡破坏后,桩身过长会增加坡体的表层位移. 值得注意的是,当桩长与滑动面深度相当时,桩体转动会促进塑性区向坡前缘发育,加剧土体破坏.
3)桩间距增加致使近桩侧与远桩侧土体的破坏模式存在差异. 随着桩间距增加,桩间土的塑性流动趋势逐渐增强,抗滑桩对远桩侧土体的支护效果逐渐减弱,此时边坡破坏模式呈现出多种破坏模式的叠加.
应当指出,本文抗滑桩加固边坡体系破坏研究仅通过数值比对初步证明了本文模型建立的合理性,但本文方法的正确性和有效性需通过大变形实际工程分析案例进行进一步证明. 由于相关研究较为匮乏,未来仍需开展抗滑桩加固边坡大变形破坏的室内模型试验或现场试验进行验证.
参考文献
VIGGIANI C.Ultimate lateral load on piles used to stabilize landslides[C]//10th International Conference on Soil Mechanics and Foundation Engineering (Stockholm),1981,3:555-560. [百度学术]
ITO T,MATSUI T.Methods to estimate lateral force acting on stabilizing piles[J].Soils and Foundations,1975,15(4):43-59. [百度学术]
戴自航,沈蒲生.抗滑桩内力计算悬臂桩法的改进[J].湖南大学学报(自然科学版),2003,30(3):81-85. [百度学术]
DAI Z H,SHEN P S.Improvements on calculation of internal forces of cantilever anti-sliding piles[J].Journal of Hunan University (Natural Sciences),2003,30(3):81-85.(in Chinese) [百度学术]
陈昌富, 杜翠翠,张根宝. 基于双参数法刚性抗滑桩嵌固深度可靠性设计[J]. 湖南大学学报(自然科学版),2014,41(2):40-46. [百度学术]
CHEN C F,DU C C,ZHANG G B.Reliability design of the embedded depth of the rigid anti-slide piles based on bi-parameter method[J].Journal of Hunan University (Natural Sciences),2014,41(2): 40-46.(in Chinese) [百度学术]
侯超群,丁莹,孙志彬,等.抗滑桩加固边坡三维稳定因素的敏感性分析[J].合肥工业大学学报(自然科学版),2022,45(8):1092-1099. [百度学术]
HOU C Q,DING Y,SUN Z B,et al.Sensitivity analysis of 3D stability factors of slopes reinforced with piles[J].Journal of Hefei University of Technology (Natural Science),2022,45(8):1092-1099.(in Chinese) [百度学术]
张泽蔚,刘素嘉,张嘎.降水条件下抗滑桩-锚杆加固边坡的离心模型试验研究[J].岩土工程学报,2023,45(增刊1):206-209. [百度学术]
ZHANG Z W,LIU S J,ZHANG G.Centrifuge modeling of anti-slide piles with anchored bolt-reinforced slopes under drawdown conditions[J]. Chinese Journal of Geotechnical Engineering,2023,45(Sup.1): 206-209.(in Chinese) [百度学术]
宋晓东.怀邵衡铁路DK324边坡坍滑分析及处理方案优化[J].湖南大学学报(自然科学版),2018,45(增刊1): 30-34. [百度学术]
SONG X D. Analysis of DK324 slope slump in Huaishaoheng railway and treatment optimization[J]. Journal of Hunan University (Natural Sciences), 2018, 45(Sup.1): 30-34.(in Chinese) [百度学术]
ZHANG S F,LI C,QI H,et al. Soil arch evolution characteristics and parametric analysis of slope anchored anti-slide pile[J]. KSCE Journal of Civil Engineering, 2021, 25(11):4121-4132. [百度学术]
彭文哲,赵明华,肖尧,等.抗滑桩加固边坡的稳定性分析及最优桩位的确定[J].湖南大学学报(自然科学版),2020,47(5):23-30. [百度学术]
PENG W Z,ZHAO M H,XIAO Y,et al.Stability analysis of anti-slide pile reinforced slope and determination of optimal pile position[J].Journal of Hunan University (Natural Sciences),2020,47(5):23-30.(in Chinese) [百度学术]
HAN C X,HOU T S,CHEN Y.Three-dimensional slope stability and anti-slide pile treatment of Zhangjiayao landslide under rainfall[J].Engineering Computations,2023,40(9/10):2667-2692. [百度学术]
孙俊,刘亦威,邢爱国.土-岩接触面滑坡孕灾机理与加护效应研究[J/OL].武汉大学学报(工学版),2023:1-14.[2024-04-30]. [百度学术]
SUN J,LIU Y W,XING A G.Research on the disaster pregnant mechanism and reinforcement effect of a soil-rock contact surface landslide[J/OL].Engineering Journal of Wuhan University,2023:1-14.[2024-04-30].(in Chinese) [百度学术]
孙玉进, 宋二祥.大位移滑坡形态的物质点法模拟[J].岩土工程学报,2015,37(7):1218-1225. [百度学术]
SUN Y J,SONG E X.Simulation of large-displacement landslide by material point method[J].Chinese Journal of Geotechnical Engineering,2015,37(7):1218-1225.(in Chinese) [百度学术]
ZHANG M Q,ZAINAL ABIDIN A R,TAN C S.State-of-the-art review on meshless methods in the application of crack problems[J]. Theoretical and Applied Fracture Mechanics,2024,131:104348. [百度学术]
史卜涛,张云,张巍.边坡稳定性分析的物质点强度折减法[J].岩土工程学报,2016,38(9):1678-1684. [百度学术]
SHI B T,ZHANG Y,ZHANG W. Strength reduction material point method for slope stability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1678-1684.(in Chinese) [百度学术]
PASTOR M,BLANC T,HADDAD B,et al.Application of a SPH depth-integrated model to landslide run-out analysis[J]. Landslides,2014,11(5):793-812. [百度学术]
SUN Z,LI H Q,GAN Y,et al. Material point method and smoothed particle hydrodynamics simulations of fluid flow problems: a comparative study[J]. Progress in Computational Fluid Dynamics,an International Journal,2018,18(1):1-18. [百度学术]
李光耀,卡里鲁.弹塑性大变形畸变问题的无网格分析[J].湖南大学学报(自然科学版),2003,30(1):47-49. [百度学术]
LI G Y,KA L L.Element free Galerkin method for elasto-plastic problems with large deformation distortion[J].Journal of Hunan University (Natural Science),2003,30(1):47-49.(in Chinese) [百度学术]
YERRO A,ALONSO E E,PINYOL N M.The material point method for unsaturated soils[J].Géotechnique,2015,65(3):201-217. [百度学术]
SOGA K,ALONSO E,YERRO A,et al.Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method[J].Géotechnique,2016,66(3):248-273. [百度学术]
YERRO A.MPM modelling of landslides in brittle and unsaturated soils[D].Universitat Politècnica de Catalunya,Departament d'Enginyeria Civil i Ambiental,2015. [百度学术]
LIU X,WANG Y.Probabilistic simulation of entire process of rainfall-induced landslides using random finite element and material point methods with hydro-mechanical coupling[J].Computers and Geotechnics,2021,132:103989. [百度学术]
ZHU H H,XIE T C,ZHANG W,et al.Numerical simulations of a strip footing on the soil slope with a buried pipe using the material point method[J].International Journal of Geomechanics,2023,23(11):04023190. [百度学术]
GAO L,GUO N,YANG Z X,et al.MPM modeling of pile installation in sand:Contact improvement and quantitative analysis[J].Computers and Geotechnics,2022,151:104943. [百度学术]
WANG J,CHAN D.Frictional contact algorithms in SPH for the simulation of soil-structure interaction[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(7): 747-770. [百度学术]
CHANDRA B,LARESE A,IACONETA I,et al. Soil-structure interaction simulation of landslides impacting a structure using an implicit material point method[C]//2nd International Conference on the Material Point Method for Modelling Soil-water-structure Interaction,2019: 72-78. [百度学术]
BUI H,SAKO K,FUKAGAWA R,et al.SPH-based numerical simulations for large deformation of geomaterial considering soil-structure interaction[C]//The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 2008, 1: 570-578. [百度学术]
GONZÁLEZ ACOSTA J L,VARDON P J,HICKS M A.Study of landslides and soil-structure interaction problems using the implicit material point method[J].Engineering Geology,2021,285:106043. [百度学术]
LIAN Y P,ZHANG X,LIU Y.An adaptive finite element material point method and its application in extreme deformation problems[J].Computer Methods in Applied Mechanics and Engineering,2012,241:275-285. [百度学术]
HARLOW F H.PIC and its progeny[J].Computer Physics Communications,1988,48(1):1-10. [百度学术]
SULSKY D,CHEN Z,SCHREYER H L.A particle method for history-dependent materials[J].Computer Methods in Applied Mechanics and Engineering,1994,118(1/2):179-196. [百度学术]
YORK A R,SULSKY D,SCHREYER H L.Fluid-membrane interaction based on the material point method[J].International Journal for Numerical Methods in Engineering,2000,48(6):901-924. [百度学术]
WANG B,VARDON P J,HICKS M A,et al.Development of an implicit material point method for geotechnical applications[J].Computers and Geotechnics,2016,71:159-167. [百度学术]
CAI F,UGAI K.Numerical analysis of the stability of a slope reinforced with piles[J].Soils and Foundations,2000,40(1):73-84. [百度学术]
年廷凯,徐海洋,刘红帅.抗滑桩加固边坡三维数值分析中的几个问题[J].岩土力学,2012,33(8):2521-2526. [百度学术]
NIAN T K,XU H Y,LIU H S.Several issues in three-dimensional numerical analysis of slopes reinforced with anti-slide piles[J].Rock and Soil Mechanics,2012,33(8):2521-2526.(in Chinese) [百度学术]
DUAN X R,ZHANG J.Numerical method for slope stabilization design with piles[J].IOP Conference Series:Earth and Environmental Science,2021,861(3):032080. [百度学术]
SKEMPTON A W.Long-term stability of clay slopes[J].Géotechnique,1964,14(2):77-102. [百度学术]
STARK T D, EID H T. Drained residual strength of cohesive soils[J]. Journal of Geotechnical Engineering,1994,120(5):856-871. [百度学术]
KAFAJI I K J. Formulation of a dynamic material point method (MPM) for geomechanical problems[M].Stuttgart:Institut für Geotechnik der Universität Stuttgart,2013. [百度学术]
BARDENHAGEN S G,BRACKBILL J U,SULSKY D.Numerical study of stress distribution in sheared granular material in two dimensions[J].Physical Review E,2000,62(3): 3882-3890. [百度学术]
ANDERSEN S. Material-point analysis of large-strain problems: modelling of landslides[D]. Aalborg University,Department of Civil Engineering,2009. [百度学术]
YORK A R,SULSKY D,SCHREYER H L. The material point method for simulation of thin membranes[J]. International Journal for Numerical Nethods in Engineering,1999,44(10):1429-1456. [百度学术]
HU W,CHEN Z.A multi-mesh MPM for simulating the meshing process of spur gears[J].Computers & Structures,2003,81(20):1991-2002. [百度学术]
AUGARDE C E,LEE S J,LOUKIDIS D. Numerical modelling of large deformation problems in geotechnical engineering:a state-of-the-art review[J]. Soils and Foundations,2021,61(6):1718-1735. [百度学术]
LU M,CECCATO F,ZHOU M L,et al.Evaluating the exceedance probability of the runout distance of rainfall-induced landslides using a two-stage FEM-MPM approach[J]. Acta Geotechnica, 2024, 19(6): 3691-3706. [百度学术]
ALSARDI A,YERRO A. Coseismic site response and slope instability using periodic boundary conditions in the material point method[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(3): 641-658. [百度学术]
ALSARDI A,COPANA J,YERRO A.Modelling earthquake-triggered landslide runout with the material point method[J].Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2021, 174(5): 563-576. [百度学术]
DUAN X R,ZHANG J,LIU L L,et al.Hybrid response surface method for system reliability analysis of pile-reinforced slopes[J].Journal of Rock Mechanics and Geotechnical Engineering,2024,16(9):3395-3406. [百度学术]
ZHANG J,WU C G,TAN X H,et al.Hierarchical response surface method for reliability analysis of a pile-slope system[J].Canadian Geotechnical Journal,2023,60(4): 397-409. [百度学术]
LIU X,WANG Y,LI D Q.Investigation of slope failure mode evolution during large deformation in spatially variable soils by random limit equilibrium and material point methods[J].Computers and Geotechnics,2019,111:301-312. [百度学术]
梅伟,顾世祥,刘鑫,等.基于滑坡大变形过程的滑坡定量风险评估方法[J].武汉大学学报(工学版),2022,55(5):443-453. [百度学术]
MEI W,GU S X,LIU X,et al.Quantitative risk assessment of landslides based on large deformation process of landslide[J].Engineering Journal of Wuhan University,2022,55(5):443-453.(in Chinese) [百度学术]
刘鑫,王宇,李典庆.考虑土体参数空间变异性的边坡大变形破坏模式研究[J].工程地质学报,2019,27(5):1078-1084. [百度学术]
LIU X,WANG Y,LI D Q. Slope failure modes at large deformation in spatially variable soils[J]. Journal of Engineering Geology,2019,27(5):1078-1084.(in Chinese) [百度学术]
戴自航,徐祥.边坡抗滑桩设计计算的三维有限元法[J].岩石力学与工程学报, 2012, 31(12): 2572-2578. [百度学术]
DAI Z H,XU X. 3D finite element method for design computations of anti-slide piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2572-2578.(in Chinese) [百度学术]
冯文娟, 琚晓冬. 基于FLA
FENG W J,JU X D.Design method for anti-slide piles based on FLA
崔晓艳, 庄妍, 张希栋, 等. 循环荷载下桩承式路堤中土拱效应动力折减系数离散元研究[J]. 湖南大学学报(自然科学版),2022, 49(9): 164-172. [百度学术]
CUI X Y,ZHUANG Y,ZHANG X D,et al.Discrete element analysis on dynamic reduction coefficient of soil arching effect in pile supported embankment under cyclic load[J].Journal of Hunan University (Natural Sciences),2022,49(9):164-172.(in Chinese) [百度学术]