摘要
为了满足当前社会对于桩基础日益增长的低成本、高强度的需求,提出了一种新桩型——带扩大桩靴桩侧同步灌浆预制桩基础. 该新桩型具有低耗高效的优势,一方面该桩型施工步骤简便,施工设备常规,便于工程推广应用;另一方面底部扩大桩靴增加了桩的有效直径,提高了桩端承载力,同时水泥浆液渗入周围土体中,可改善桩土接触面特性,进而提高桩侧摩阻力. 为进一步探明带扩大桩靴桩侧同步灌浆预制桩基础的承载特性,本文开展室内模型试验进行研究. 试验结果表明,带扩大桩靴桩侧同步灌浆模型桩在桩顶受压时,桩基承载力明显高于等截面常规桩,而且桩侧水泥浆液凝固后,其承载力将进一步提升. 本研究揭示了新桩型的承载机理,显示了新桩型承载能力的优越性. 相关研究结果可以为新桩型工程实践提供理论支撑.
近年来,随着工程建设的发展,桩基础作为一种承载力能力高、适用范围广、历史久远的基础形式,得到越来越广泛的应用. 桩基础通过将上部建筑物的荷载传递到深处承载力较强的土层中,以满足承载力和沉降要求,是目前应用最广泛的深基础类
因此,竹节
目前常用来提高桩基承载力的另一个措施是注
为了解决上述问题,本文提出一种带扩大桩靴桩侧同步灌浆预制桩基础(已授权专
该新桩型通过改进桩基形式和施工方法,具有节约成本、环境友好的特点,因此探究新桩型承载特性对于其推广应用具有重要意义. 当前专家学者通常使用数值模拟、理论分析、模型试验等方法探究桩基的承载能力. Józefiak
1 模型试验概况
带扩大桩靴桩侧同步灌浆预制桩示意图如

图1 带扩大桩靴桩侧同步灌浆预制桩示意图
Fig.1 Schematic diagram of the synchronous grouting precast pile on the side of the enlarged pile shoe
1.1 模型箱选择及土样制备
本次试验选用0.80 m×0.80 m×1.20 m的铁质箱. 所填砂土为中密石英砂,其相对密度为2.65 g/c

图2 模型箱示意图
Fig.2 Schematic diagram of model box
模型箱填砂时采用落雨法分层击实,填砂高度为0.90 m,桩基埋深为0.60 m. 在模型箱中每0.10 m处进行标记,并向模型箱中加入100.95 kg石英砂夯平. 初次填砂至距模型箱底部0.30 m处,待模型桩制备完成后,将桩身垂直插入上述制备的砂土中进行二次填砂,直至桩身埋入土体0.60 m,完成填砂操作.
1.2 模型桩参数
如
编号 | 桩身直径/mm | 扩大桩靴直径/mm | 是否注浆 |
---|---|---|---|
P1 | 50 | — | 否 |
P2 | 40 | 50 | 否 |
P3 | 40 | 50 | 是 |

图3 模型桩图
Fig.3 Model pile diagram
将上述模型桩的桩身底部与扩大桩靴连接,其中P1使用配套的PVC管帽使桩端形成闭口,P2、P3使用直径50 mm圆锥形扩大桩靴,并分别在P1、P2、P3桩身上距桩底5、40、70 cm处贴设3组应变片,如

图4 桩身应变片位置示意图
Fig.4 Schematic diagram of the position of the pile strain gauge
对于P3模型桩还需在距桩底20、40、60 cm处桩身对侧钻孔,保证水泥浆液能够顺利流出,以便进行桩侧同步灌浆. 待P3埋入模型箱后,向桩体中一次性倒入210 mL的水泥浆液,待水泥浆液凝固后开始进行后续静载实验.
1.3 加载方案
按照上述试验方法完成模型桩的安装后,分别对各模型桩进行室内静载试验,试验步骤如下:
1)安装调试试验装置(如

图5 试验装置图
Fig.5 Test device diagram
2)进行模型桩静载试验. 首先,利用试桩加载确定竖向极限承载力范围. 然后,通过千斤顶对桩基进行加载,本试验按照《建筑基桩检测技术规范》 (JGJ 106—2014
2 试验结果分析
本节通过对上述模型桩P1、P2、P3分别进行的静载试验,得到了各模型桩的桩基承载力.
2.1 模型桩P1结果分析
P1桩侧摩阻力/端阻力-桩土相对位移曲线,如

图6 P1桩侧摩阻力/端阻力-桩土相对位移曲线
Fig.6 Pile side friction resistance/end resistance-pile-soil relative displacement curve of P1
P1桩侧摩阻力-桩土相对位移曲线,如

图7 P1桩侧摩阻力-桩土相对位移曲线
Fig.7 Pile side friction resistance-pile-soil relative displacement curve of P1
2.2 模型桩P2结果分析
P2桩侧摩阻力/端阻力-位移曲线,如

图8 P2桩侧摩阻力/端阻力-桩土相对位移曲线
Fig.8 Curve of side friction resistance/end resistance-pile-soil relative displacement of P2

图9 P2桩侧摩阻力-桩土相对位移曲线
Fig.9 Pile side friction resistance-pile-soil relative displacement curve of P2
2.3 模型桩P3结果分析

图10 P3桩侧摩阻力/端阻力-桩土相对位移曲线
Fig.10 Pile side friction resistance/end resistance-pile-soil relative displacement curve of P3
P3桩侧摩阻力-桩土相对位移曲线图,如

图11 P3桩侧摩阻力-桩土相对位移曲线
Fig.11 Pile side friction resistance-pile-soil relative displacement curve of P3
2.4 综合分析
3种模型桩的总桩侧摩阻力-桩土相对位移曲线如

图12 总桩侧摩阻力-桩土相对位移曲线图
Fig.12 Total pile side friction resistance-pile-soil relative displacement curve
3种模型桩的总桩端阻力-桩土相对位移曲线如

图13 总桩端阻力-桩土相对位移曲线图
Fig.13 Total pile end resistance-pile-soil relative displacement curve
3种模型桩的荷载-桩土相对位移曲线如

图14 荷载-桩土相对位移曲线图
Fig.14 Load-pile-soil relative displacement curve
3种模型桩的桩侧摩阻力/桩径比值-桩土相对位移曲线如

图15 桩侧摩阻力与桩径比值-桩土相对位移曲线图
Fig.15 Pile side friction resistance to pile diameter ratio-pile-soil relative displacement curve
3种模型桩的桩端阻力占总承载力比值-桩土相对位移曲线如

图16 桩端阻力占总承载力比值-桩土相对位移曲线
Fig.16 Ratio of pile tip resistance to total bearing capacity-pile-soil relative displacement curve
3 结 论
本文提出一种带扩大桩靴桩侧同步灌浆预制桩基础. 底部扩大桩靴增加了桩端承载力,同步灌浆改善了桩土接触面的特性,提高了桩侧摩阻力. 通过对常规桩、带扩大桩靴预制桩、带扩大桩靴桩侧同步灌浆预制桩分别进行室内静载模型试验,得出以下结论:
1)带扩大桩靴桩侧同步灌浆预制桩在受压时,桩身下半部分桩侧摩阻力大于上半部分,总桩侧摩阻力大于常规桩和带扩大桩靴预制桩,且承载能力高于常规桩. 因此,在工程应用中,选用新桩型相较于常规桩,能够有效节约成本.
2)在受压时,带扩大桩靴桩预制桩和常规桩受力规律相似,均为桩端阻力发挥主要作用. 而带扩大桩靴桩侧同步灌浆预制桩承载机理有所不同,前期桩侧摩阻力更大,待桩侧摩阻力达到极限值后,桩端阻力发挥主要作用.
3)桩侧同步灌浆对新桩型桩侧摩阻力影响极大,未注浆时扩大桩靴上方会形成“空腔”,而“空腔”上部土体会逐渐下落填充,导致桩身下半部分侧摩阻力丧失,甚至出现负值. 而采用桩侧同步灌浆的新桩型在受压后期桩侧摩擦阻力发挥主要作用.
参考文献
建筑桩基技术规范:JGJ 94—2008[S].北京:中国建筑工业出版社,2008. [百度学术]
Technical code for building pile foundations:JGJ 94—2008[S].Beijing:China Architecture & Building Press,2008.(in Chinese) [百度学术]
史佩栋.桩基工程手册(桩和桩基础手册)[M].2版.北京:人民交通出版社股份有限公司,2015. [百度学术]
SHI P D. Pile and pile foundation handbook[M]. 2nd ed.Beijing:China Communications Press Co., Ltd.,2015.(in Chinese) [百度学术]
徐至钧,李智宇,张亦农.预应力混凝土管桩设计施工及应用实例[M].北京:中国建筑工业出版社,2009. [百度学术]
XU Z J,LI Z Y,ZHANG Y N.Design, construction and application examples of prestressed concrete pipe piles[M]. Beijing:China Architecture & Building Press,2009.(in Chinese) [百度学术]
蔡邦国,姜玉龙,王理璞,等.填砂竹节桩的承载性能对比研究[J].山西建筑,2018,44(31):55-57. [百度学术]
CAI B G,JIANG Y L,WANG L P,et al.Comparative study on bearing behavior of sand-filled nodular pipe piles[J].Shanxi Architecture,2018,44(31):55-57.(in Chinese) [百度学术]
龚晓南,解才,周佳锦,等.静钻根植竹节桩抗压与抗拔对比研究[J].上海交通大学学报,2018,52(11):1467-1474. [百度学术]
GONG X N,XIE C,ZHOU J J,et al.A comparative study on the static drill rooted nodular piles under tension and compression[J].Journal of Shanghai Jiao Tong University,2018,52(11):1467-1474.(in Chinese) [百度学术]
李富远,王忠瑾,谢新宇,等.静钻根植能源桩承载特性模型试验研究[J].岩土力学,2020,41(10):3307-3316. [百度学术]
LI F Y,WANG Z J,XIE X Y,et al.Model test on bearing characteristic of static drill rooted energy pile[J].Rock and Soil Mechanics,2020,41(10): 3307-3316.(in Chinese) [百度学术]
刘鑫,王奎华,涂园.双向非均质土中填砂竹节管桩纵向振动理论与试验研究[J].振动与冲击,2020,39(14):43-52. [百度学术]
LIU X,WANG K H,TU Y.Theoretical and experimental study on the longitudinal vibration of sand-filled nodular pipe piles in bidirectional inhomogeneous soil[J].Journal of Vibration and Shock,2020,39(14):43-52.(in Chinese) [百度学术]
王奎华,刘鑫,吴君涛,等.考虑横向惯性下填砂竹节管桩纵向振动特性[J].湖南大学学报(自然科学版),2020,47(5):58-69. [百度学术]
WANG K H,LIU X,WU J T,et al.Longitudinal vibration characteristics of sand-filled nodular pipe pile considering lateral inertial effect[J].Journal of Hunan University (Natural Sciences),2020,47(5):58-69.(in Chinese) [百度学术]
王奎华,肖偲,高柳,等.静钻根植竹节桩竖向动力响应研究[J].振动与冲击,2019,38(15):49-56. [百度学术]
WANG K H,XIAO S,GAO L,et al.Vertical dynamic response of a static drill rooted nodular pile[J].Journal of Vibration and Shock, 2019, 38(15): 49-56.(in Chinese) [百度学术]
肖偲,王奎华,张日红,等.静钻根植桩低应变动力响应的现场试验和数值模拟[J].上海交通大学学报,2020,54(4):406-412. [百度学术]
XIAO S,WANG K H,ZHANG R H,et al.Field test and numerical simulation for the dynamic response of low-strain testing on static drill rooted pile[J].Journal of Shanghai Jiao Tong University,2020,54(4):406-412.(in Chinese) [百度学术]
周佳锦,王奎华,龚晓南,等.静钻根植抗拔桩承载性能数值模拟[J].浙江大学学报(工学版),2015,49(11):2135-2141. [百度学术]
ZHOU J J, WANG K H, GONG X N, et al.Numerical simulation on behavior of static drill rooted pile under tension[J].Journal of Zhejiang University (Engineering Science), 2015, 49(11): 2135-2141.(in Chinese) [百度学术]
高柳,王奎华, 李振亚, 等.考虑桩周土竖向作用和施工扰动效应时大直径楔形桩的纵向振动特性[J].振动与冲击, 2018,37(2): 30-37. [百度学术]
GAO L,WANG K H,LI Z Y,et al.Vertical vibration characteristics of a large diameter tapered pile considering vertical action of surrounding soil and construction disturbance effect[J].Journal of Vibration and Shock,2018,37(2):30-37.(in Chinese) [百度学术]
童魏烽.基于渐变截面模型的楔形桩振动特性研究及应用[D].杭州:浙江大学,2019. [百度学术]
TONG W F.Study and application on vibration characteristics of tapered pile based on gradient section model[D].Hangzhou:Zhejiang University,2019.(in Chinese) [百度学术]
王奎华,童魏烽.基于非等截面桩体模型的楔形桩动力响应[J].哈尔滨工业大学学报,2019,51(8):104-110. [百度学术]
WANG K H,TONG W F.Dynamic response of tapered pile based on non-equal-section pile model[J].Journal of Harbin Institute of Technology,2019,51(8):104-110.(in Chinese) [百度学术]
王奎华,童魏烽,王磊.基于非等截面桩体模型的缺陷楔形桩动力响应研究[J].天津大学学报(自然科学与工程技术版),2018,51(12):1238-1245. [百度学术]
WANG K H,TONG W F,WANG L.Dynamic response of defective tapered pile based on non-equal-section pile model[J].Journal of Tianjin University (Science and Technology), 2018, 51(12): 1238-1245.(in Chinese) [百度学术]
王奎华,童魏烽,肖偲,等.楔形桩的动力响应与试验研究[J].湖南大学学报(自然科学版), 2019, 46(5): 94-102. [百度学术]
WANG K H,TONG W F,XIAO S, et al. Study on dynamic response of tapered pile and model test[J]. Journal of Hunan University (Natural Sciences),2019,46(5):94-102.(in Chinese) [百度学术]
杨紫健,吴文兵,陆洪智,等.黏弹性地基中楔形桩水平振动特性研究[J].哈尔滨工业大学学报,2021,53(11):74-83. [百度学术]
YANG Z J,WU W B,LU H Z,et al. Horizontal vibration characteristics of tapered pile embedded in viscoelastic foundation[J]. Journal of Harbin Institute of Technology, 2021, 53(11):74-83.(in Chinese) [百度学术]
林祥军,张魁,赵成昆,等.套管螺旋桩抗压承载性能模型试验研究[J].江苏建筑,2021(6): 95-97. [百度学术]
LIN X J,ZHANG K,ZHAO C K,et al.Model test study on compressive bearing characteristics of casing screw pile[J].Jiangsu Construction, 2021(6): 95-97.(in Chinese) [百度学术]
张新春,韩春雨,白云灿,等.螺旋桩承载特性受桩体几何结构影响的试验研究[J].结构工程师,2019,35(2):178-183. [百度学术]
ZHANG X C,HAN C Y,BAI Y C,et al.The experimental study on the bearing capacity of steel screw piles owing to the effects of geometrical structures of piles[J].Structural Engineers, 2019, 35(2):178-183.(in Chinese) [百度学术]
张新春,郝洪策,胡燃,等.砂土中螺旋桩纵向振动响应的模型试验研究[J].中国工程机械学报,2021,19(6):530-535. [百度学术]
ZHANG X C,HAO H C,HU R,et al.Model test study on longitudinal vibration response characteristics of screw piles in sand[J].Chinese Journal of Construction Machinery,2021,19(6):530-535.(in Chinese) [百度学术]
赵成昆,宗钟凌,张魁,等.海相软土区注浆螺旋桩承压性能试验研究[J].江苏海洋大学学报(自然科学版),2021,30(2):66-71. [百度学术]
ZHAO C K,ZONG Z L,ZHANG K,et al.Experimental study on bearing capacity of grouting screw pile in marine soft soil area[J].Journal of Jiangsu Ocean University (Natural Science Edition),2021,3 0(2): 66-71.(in Chinese) [百度学术]
赵宇.注浆式螺旋钢管桩抗压承载力试验研究及设计方法[D].济南:山东大学,2021. [百度学术]
ZHAO Y. Experimental study and design method of compressive bearing capacity of grouting helical pile[D]. Jinan: Shandong University,2021.(in Chinese) [百度学术]
官厚兵.旋挖钻孔灌注桩及后注浆工艺在桩基工程中的应用[J].建材世界,2020,41(6): 43-46. [百度学术]
GUAN H B.Application of rotary bored cast-in-place pile and post-grouting technology in pile foundation engineering[J].The World of Building Materials,2020,41(6): 43-46.(in Chinese) [百度学术]
胡文军,许晓杰,侯亚辉,等.岩溶区桩基溶洞注浆关键施工技术研究[J].山东交通科技,2019(5): 38-40. [百度学术]
HU W J, XU X J, HOU Y H, et al. Study on key construction technology of pile foundation karst cave grouting in karst area[J].Shandong Jiaotong Keji, 2019, (5): 38-40.(in Chinese) [百度学术]
WANG Z F, SHEN S L, HO C E, et al. Jet grouting practice: an overview[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2013, 44(4): 88-96. [百度学术]
赵春风,杜兴华,赵程,等.中掘预应力管桩挤土效应试验研究[J].岩土工程学报,2013,35(3):415-421. [百度学术]
ZHAO C F,DU X H,ZHAO C,et al.Squeezing effect of inner-digging prestressed piles[J].Chinese Journal of Geotechnical Engineering,2013,35(3):415-421.(in Chinese) [百度学术]
VICKARS R A,CLEMENCE S P.Performance of helical piles with grouted shafts[C]//New Technological and Design Developments in Deep Foundations.Denver,Colorado,USA.American Society of Civil Engineers,2000:327-341. [百度学术]
胡涛,万志辉,戴国亮,等.饱和土中后注浆灌注桩的注浆压力回归分析及优化[J].东南大学学报(自然科学版),2022,52(5):875-882. [百度学术]
HU T,WAN Z H,DAI G L,et al.Regression analysis and optimization for grouting pressure of post-grouting pile in saturated soil[J].Journal of Southeast University (Natural Science Edition),2022,52(5):875-882.(in Chinese) [百度学术]
HU T,WAN Z H,DAI G L,et al.Prediction and design of grouting parameters for long and large-diameter postgrouted drilled shafts[J].International Journal of Geomechanics,2024,24(2):04023265. [百度学术]
HU T,DAI G L,WAN Z H,et al.Field study of the effects of composite excavation and combined grouting on the response of large-diameter and superlong rock-socketed bored piles[J].Acta Geotechnica,2024,19(4):1853-1871. [百度学术]
HU T,DAI G L,WAN Z H,et al.Full-scale tests on the grouting effectiveness of offshore bored piles with various bearing strata[J].Applied Ocean Research,2023,141:103791. [百度学术]
STOCKER M. The influence of post-grouting on the load-bearing capacity of bored piles[J]. European Conference on Soil Mechanics and Foundation Engineering, 1983, 1: 167-170. [百度学术]
BRUCE D. Enhancing the performance of large diameter piles by grouting[J]. Ground Engineering, 1986, 19(4): 9-15. [百度学术]
FLEMING W G K. The understanding of continuous filght ouger piling, its monitoring and control[J]. International Geotachnical Engineering, 1995, 113(3): 157-165. [百度学术]
安爱军.深厚软土地区高速铁路后注浆桩基承载机理与试验研究[D].长沙:中南大学,2014. [百度学术]
AN A J. Study on experiments and load-bearing mechanism of post grouting for pile foundation of high-speed railway in the deep soft soil region[D].Changsha:Central South University,2014.(in Chinese) [百度学术]
房凯.桩端后注浆过程中浆土相互作用及其对桩基性状影响研究[D].杭州:浙江大学,2013. [百度学术]
FANG K.Grout-soil interaction during base grouting and its effects on the behavior of grouted piles[D].Hangzhou:Zhejiang University,2013.(in Chinese) [百度学术]
张文学,刘海陆,谢全懿.岩溶区桩基注浆加固效果的影响因素分析[J].铁道建筑,2014,54(7):28-30. [百度学术]
ZHANG W X,LIU H L,XIE Q Y. Affected factors analysis of pile foundation grouting reinforcing effect in karst region[J]. Railway Engineering, 2014, 54(7): 28-30.(in Chinese) [百度学术]
王奎华,童魏烽,吴君涛,等.带扩大桩靴桩侧同步灌浆预制桩施工结构及其施工方法:CN108149676A[P].2018-06-12. [百度学术]
WANG K H,TONG W F,WU J T,et al.Construction structure and method of precast pile with enlarged spudcan and synchronous side grouting:CN108149676A[P].2018-06-12.(in Chinese) [百度学术]
JÓZEFIAK K,ZBICIAK A,MAŚLAKOWSKI M,et al.Numerical modelling and bearing capacity analysis of pile foundation[J].Procedia Engineering,2015,111:356-363. [百度学术]
AMJAD M,AHMAD I,AHMAD M,et al.Prediction of pile bearing capacity using XGBoost algorithm:modeling and performance evaluation[J].Applied Sciences,2022,12(4):2126. [百度学术]
PAIK K,SALGADO R.Determination of bearing capacity of open-ended piles in sand[J].Journal of Geotechnical and Geoenvironmental Engineering,2003,129(1):46-57. [百度学术]
亢佳帅.考虑时效性的湛江组结构性黏土中群桩模型试验[D].桂林:桂林理工大学,2022. [百度学术]
KANG J S.Model test of pile group in structural clay of Zhanjiang Formation considering aging [D].Guilin:Guilin University of Technology,2022.(in Chinese) [百度学术]
孟凡星.基坑倾斜支护桩受力变形特性研究[D].荆州:长江大学,2023. [百度学术]
MENG F X.Study on the mechanical deformation characteristics ofinclined retaining piles in foundation [D].Jingzhou:Yangtze University,2023.(in Chinese) [百度学术]
MO P Q,MARSHALL A M,YU H S.Centrifuge modelling of cone penetration tests in layered soils[J].Géotechnique,2015,65(6):468-481. [百度学术]