摘要
聚乙烯醇(PVA)纤维能抑制混凝土裂缝扩展,但抑制效果局限于基体内部的微裂缝,对纳米级裂缝的抑制效果甚微. 本文研究纳米CaCO3对PVA纤维混凝土静动态劈裂抗拉性能的影响,并通过扫描电镜(SEM)试验分析其增强机理. 研究结果表明:纳米CaCO3掺量为1.5%时,PVA纤维混凝土的静动态劈裂抗拉性能显著提高. 当养护时间为28 d,纳米CaCO3掺量为1.5%、PVA纤维掺量为0.6%时,与未掺加纳米CaCO3的同掺量PVA纤维混凝土相比,静态劈裂抗拉强度提高了8.6%,在2.25~3.08
混凝土是现代工程项目中使用最广泛、用量最大的建筑材料,但混凝土存在抗拉强度低、脆性破坏和裂缝难以控制等缺
普通纤维增强混凝土的效果局限于基体内部微裂缝,对纳米级裂缝几乎不起作用,而水泥基体内部的微裂缝和孔结构对混凝土力学性能的影响极为显
建筑结构在服役期间可能会受到爆炸、地震、撞击等动态冲击荷载作用,容易造成重大生命、财产损失,因此对建筑材料进行动态力学性能研究尤为重要. 杨国梁
综上所述,PVA纤维可以提高混凝土的抗拉强度,抑制裂缝扩展,纳米CaCO3可以加快水化反应速率,改善水泥基体的密实度. 目前研究主要集中在单掺PVA纤维和纳米CaCO3对混凝土静态力学性能的影响,关于在PVA纤维混凝土中掺入纳米CaCO3对混凝土动态力学性能影响的研究较少. 因此,本文主要研究不同掺量纳米CaCO3对PVA纤维混凝土静动态劈裂抗拉性能的影响,并通过扫描电镜(SEM)试验分析纳米CaCO3对PVA纤维混凝土的增强机理,为纳米材料混掺纤维改性混凝土在动态荷载作用下的劈裂抗拉性能研究提供试验依据.
1 试验概况
1.1 试验原材料
水泥采用工源牌P·O 42.5水泥;纳米CaCO3物理性能如
CaCO3质量分数/% | MgO质量 分数/% | pH值 | 粒径/nm | 比表面积/( |
---|---|---|---|---|
>98 | ≤0.5 | 8.5~9.5 | 15~20 | 40 |
长度/mm | 直径/mm | 密度/(g· | 抗拉强度/MPa | 弹性模量/GPa | |
---|---|---|---|---|---|
12 | 0.016 | 1.3 | 1 560 | 20 |
1.2 试验方案和试件制备
经过多次试配,共设计13个试验组,其中,混凝土静动态劈裂抗拉试验试件尺寸(直径×高度)为100 mm×50 m
编号 | 纳米CaCO3掺量/% | PVA纤维掺量/% | 水泥/(kg· | 粉煤灰/(kg· | 水/(kg· | 砂/(kg· | 粗骨料/(kg· | 减水剂/(kg· |
---|---|---|---|---|---|---|---|---|
N0P0 | 0 | 0 | 369 | 41 | 123 | 800 | 1 200 | 12.3 |
N0P3 | 0 | 0.3 | 369 | 41 | 123 | 800 | 1 200 | 12.3 |
N0P6 | 0 | 0.6 | 369 | 41 | 123 | 800 | 1 200 | 12.3 |
N0P9 | 0 | 0.9 | 369 | 41 | 123 | 800 | 1 200 | 12.3 |
N10P3 | 1.0 | 0.3 | 365.3 | 41 | 123 | 800 | 1 200 | 12.3 |
N15P3 | 1.5 | 0.3 | 363.5 | 41 | 123 | 800 | 1 200 | 12.3 |
N20P3 | 2.0 | 0.3 | 361.6 | 41 | 123 | 800 | 1 200 | 12.3 |
N10P6 | 1.0 | 0.6 | 365.3 | 41 | 123 | 800 | 1 200 | 12.3 |
N15P6 | 1.5 | 0.6 | 363.5 | 41 | 123 | 800 | 1 200 | 12.3 |
N20P6 | 2.0 | 0.6 | 361.6 | 41 | 123 | 800 | 1 200 | 12.3 |
N10P9 | 1.0 | 0.9 | 365.3 | 41 | 123 | 800 | 1 200 | 12.3 |
N15P9 | 1.5 | 0.9 | 363.5 | 41 | 123 | 800 | 1 200 | 12.3 |
N20P9 | 2.0 | 0.9 | 361.6 | 41 | 123 | 800 | 1 200 | 12.3 |
1.3 试验加载装置及过程
混凝土静态劈裂抗拉试验参照《混凝土物理力学性能试验方法标准》(GB/T 50081—2019
动态劈裂抗拉试验采用直径为100 mm的SHPB装置,SHPB试验系统示意图如

图1 SHPB试验系统示意图
Fig.1 SHPB test system diagram
试验前,将圆盘状试件夹在入射杆和透射杆之间. 通过预设撞击杆进深以及氮气气压来控制加载速度,在试验过程中,首先,入射杆受到撞击杆的冲击,产生入射波,入射波在入射杆与试件的接触面发生反射形成反射波,入射波透过试件继续向前传播进入透射杆,形成透射波. 应变片贴在入射杆和透射杆中部,当应力脉冲传播的同时,动态应变仪实时记录应变信号,为了尽量保证试件在破坏之前达到应力平衡状态,在入射杆前端粘贴直径 50 mm、厚2 mm的橡胶片作为脉冲整形器以延长波形上升的时间.
1.4 动态劈裂抗拉强度与耗散能的计算
动态劈裂抗拉试验是基于一维应力假设和均匀性假定开
(1) |
(2) |
(3) |
式中:为透射杆上应变片记录的透射波信号;、分别为压杆的横截面面积(m
根据能量守恒原理和一维弹性波理
(4) |
(5) |
(6) |
(7) |
式中:、分别为入射杆上应变片记录的入射波、反射波信号;为杆的纵波速度(m/s).
2 结果与讨论
2.1 纳米CaCO3对PVA纤维混凝土静态劈裂抗拉性能的影响

(a) PVA纤维掺量0.3%

(b) PVA纤维掺量0.6%

(c) PVA纤维掺量0.9%
图2 不同掺量纳米CaCO3对PVA纤维混凝土静态劈裂
Fig.2 Effect of different content of nano-CaCO3 on static
抗拉强度的影响
splitting tensile strength of PVA fiber reinforced concrete
2.2 纳米CaCO3对PVA纤维混凝土动态劈裂抗拉性能的影响
2.2.1 试验结果
通过SHPB装置上的应变片采集的、和以及时间数据,按照1.4节式(1)~
试件组别 | 应变率/ | 动态劈裂抗拉强度/MPa | 耗散能/J |
---|---|---|---|
N0P0 | 1.02 | 9.03 | 33.70 |
1.34 | 11.30 | 54.20 | |
1.72 | 13.10 | 66.10 | |
2.25 | 14.71 | 94.40 |
续表
试件组别 | 应变率/ | 动态劈裂抗拉强度/MPa | 耗散能/J |
---|---|---|---|
N0P3 | 1.05 | 9.14 | 36.20 |
1.36 | 11.94 | 57.10 | |
1.65 | 13.67 | 70.30 | |
2.07 | 15.15 | 100.20 | |
N0P6 | 1.08 | 9.33 | 39.90 |
1.45 | 11.72 | 58.90 | |
1.88 | 13.28 | 74.60 | |
2.44 | 15.47 | 106.90 | |
N0P9 | 1.11 | 8.60 | 31.90 |
1.40 | 11.07 | 53.10 | |
1.73 | 12.71 | 63.70 | |
2.28 | 14.56 | 90.20 | |
N10P3 | 1.15 | 9.57 | 43.70 |
1.31 | 12.68 | 61.70 | |
1.68 | 13.94 | 73.90 | |
2.18 | 15.44 | 105.70 | |
N15P3 | 1.19 | 9.71 | 48.40 |
1.41 | 12.88 | 64.30 | |
1.71 | 14.41 | 80.20 | |
2.34 | 15.83 | 112.50 | |
N20P3 | 1.23 | 9.44 | 41.30 |
1.44 | 12.35 | 60.10 | |
1.75 | 13.90 | 74.50 | |
2.37 | 15.66 | 107.30 | |
N10P6 | 1.12 | 9.81 | 42.20 |
1.39 | 11.89 | 63.50 | |
1.95 | 14.27 | 81.30 | |
2.71 | 16.26 | 110.90 | |
N15P6 | 1.17 | 10.14 | 46.00 |
1.53 | 13.35 | 68.00 | |
2.03 | 15.72 | 89.10 | |
2.87 | 17.21 | 120.20 | |
N20P6 | 1.10 | 9.77 | 41.30 |
1.48 | 13.10 | 61.20 | |
1.93 | 14.18 | 78.80 | |
3.08 | 16.70 | 109.10 | |
N10P9 | 1.20 | 9.61 | 41.30 |
1.47 | 11.87 | 61.30 | |
1.81 | 14.07 | 74.50 | |
2.31 | 16.20 | 104.80 | |
N15P9 | 1.29 | 10.00 | 45.80 |
1.51 | 12.82 | 66.50 | |
1.94 | 15.29 | 84.60 | |
2.46 | 16.88 | 115.70 | |
N20P9 | 1.32 | 9.73 | 42.50 |
1.67 | 12.49 | 60.80 | |
2.05 | 14.69 | 76.20 | |
2.84 | 16.45 | 106.30 |
2.2.2 破坏形态
不同应变率下纳米CaCO3-PVA纤维混凝土动态劈裂抗拉破坏模式如

图3 不同应变率下纳米CaCO3-PVA纤维混凝土的破坏形态
Fig.3 The failure pattern of nano-CaCO3-PVA fiber reinforced concrete under different strain rates
2.2.3 动态劈裂抗拉强度
不同应变率下PVA纤维混凝土动态劈裂抗拉强度随纳米CaCO3掺量变化如

(a) PVA纤维掺量0.3%

(b) PVA纤维掺量0.6%

(c) PVA纤维掺量0.9%
图4 不同应变率下纳米CaCO3-PVA纤维混凝土动态劈裂抗拉强度
Fig.4 Dynamic splitting tensile strength of nano-CaCO3-PVA fiber reinforced concrete under different strain rates
2.2.4 耗散能
不同应变率下PVA纤维混凝土耗散能随纳米CaCO3掺量变化如

(a) PVA纤维掺量0.3%

(b) PVA纤维掺量0.6%

(c) PVA纤维掺量0.9%
图5 不同应变率下纳米CaCO3-PVA纤维混凝土耗散能
Fig.5 Dissipation energy of nano-CaCO3-PVA fiber reinforced concrete under different strain rates
2.3 纳米CaCO3对PVA纤维混凝土微观结构的影响

(a) 单掺纤维时内部微裂缝
(b) 单掺纤维时界面过渡区
(c) 纳米CaCO3对界面过渡区的影响

(d) PVA纤维的桥联作用
(e) PVA纤维的拔出作用
(f) 纳米CaCO3对水化产物的影响
图6 纳米CaCO3对PVA纤维混凝土微观结构的影响
Fig.6 Effect of nano-CaCO3 on microstructure of PVA fiber reinforced concrete
从
3 结 论
本文通过对不同纳米CaCO3掺量的PVA纤维混凝土进行静动态劈裂抗拉试验,探究不同纳米CaCO3掺量和应变率下PVA纤维混凝土的劈裂抗拉强度、耗散能的变化规律及相应的破坏形态,得出以下结论:
1)纳米CaCO3的掺入对PVA纤维混凝土的静态劈裂抗拉性能有增强作用. 随着纳米CaCO3掺量的增加,混凝土的静态劈裂抗拉强度先增大后减小. 当养护龄期为28 d,纳米CaCO3和PVA纤维掺量分别为1.5%、0.6%时,混凝土静态劈裂抗拉强度达到最大.
2)纳米CaCO3-PVA纤维混凝土动态劈裂抗拉破坏分为初始裂缝产生、裂缝扩张和新裂缝产生、纤维拔出和拉断三个阶段. 随着应变率的增大,PVA纤维混凝土试件的破坏程度逐渐加大且破坏模式相似,都是由中心裂缝开始向两加载端扩展,最终沿加载方向劈裂成两部分.
3)在同一纳米CaCO3掺量下,PVA纤维混凝土的动态劈裂抗拉强度和耗散能均随应变率增加而增大,具有明显的应变率效应;在同一应变率下,PVA纤维混凝土的动态劈裂抗拉强度和耗散能随纳米CaCO3掺量增加呈现先增大后减小的趋势. 纳米CaCO3掺量为1.5%时,PVA纤维混凝土的动态劈裂抗拉强度和耗散能达到最大,纳米CaCO3的掺入能够有效增强PVA纤维混凝土的动态劈裂抗拉性能.
4)PVA纤维通过桥联作用来抑制裂缝的扩展,但抑制的裂缝尺寸有限. 掺入纳米CaCO3后,纳米CaCO3发挥晶核作用、化学作用和填充作用,通过促进水化产物的生成来填补混凝土内部的孔隙和微裂缝,使PVA纤维和水泥基体之间的界面过渡区更加致密,进一步增强了PVA纤维的阻裂作用,宏观上提高了混凝土材料的劈裂抗拉性能.
参考文献
JIANG J Y,FENG T T,CHU H Y,et al. Quasi-static and dynamic mechanical properties of eco-friendly ultra-high-performance concrete containing aeolian sand[J]. Cement and Concrete Composites,2019,97:369-378. [百度学术]
JALAL A,SHAFIQ N,NIKBAKHT E,et al.Mechanical properties of hybrid basalt-polyvinyl alcohol (PVA) fiber reinforced concrete[J]. Key Engineering Materials,2017,744:3-7. [百度学术]
张广泰,张路杨,邢国华,等.聚丙烯纤维混凝土梁受剪承载力试验研究[J].湖南大学学报(自然科学版),2020,47(5):70-77. [百度学术]
ZHANG G T,ZHANG L Y,XING G H,et al.Experimental study on shear capacity of polypropylene fiber concrete beams[J].Journal of Hunan University (Natural Sciences), 2020, 47(5):70-77.(in Chinese) [百度学术]
毕继红, 霍琳颖, 赵云, 等.钢纤维混凝土的本构模型及力学性能分析[J].湖南大学学报(自然科学版),2021, 48(7):9-18. [百度学术]
BI J H,HUO L Y,ZHAO Y,et al.Constitutive model and mechanical properties of steel fiber reinforced concrete[J].Journal of Hunan University (Natural Sciences),2021, 48(7): 9-18.(in Chinese) [百度学术]
ARAIN M F, MEMON H, WANG M X, et al. Matrix tailoring for polyvinyl alcohol (PVA) fiber-reinforced ductile cementitious composites[J]. AATCC Journal of Research, 2023, 10(2):63-72. [百度学术]
FENG Y,NIU Z J,ZHAO C,et al. Compressive test investigation and numerical simulation of polyvinyl-alcohol (PVA)-fiber-reinforced rubber concrete[J]. Buildings,2023, 13(2): 431. [百度学术]
NOUSHINI A,VESSALAS K,SAMALI B.Static mechanical properties of polyvinyl alcohol fibre reinforced concrete (PVA-FRC)[J]. Magazine of Concrete Research,2014,66(9):465-483. [百度学术]
徐阳晨,邢国华,黄娇,等.聚乙烯醇纤维和碳纳米管改性对混凝土力学性能的影响[J].建筑材料学报,2023,26(7):809-815. [百度学术]
XU Y C,XING G H,HUANG J,et al.Effect of PVA fiber and carbon nanotubes modification on mechanical properties of concrete[J].Journal of Building Materials,2023,26(7):809-815.(in Chinese) [百度学术]
SUN M, ZHU J Q, SUN T,et al.Multiple effects of nano-CaCO3 and modified polyvinyl alcohol fiber on flexure-tension-resistant performance of engineered cementitious composites[J]. Construction and Building Materials,2021,303:124426. [百度学术]
赵静,李晓峰,郭力.玄武岩-聚丙烯纤维混凝土孔隙结构分形维数及力学性能研究[J].复合材料科学与工程,2023(8):78-84. [百度学术]
ZHAO J,LI X F,GUO L.Study on fractal dimension and mechanical properties of basalt polypropylene fiber concrete pore structure[J].Composites Science and Engineering, 2023(8):78-84.(in Chinese) [百度学术]
康玉梅,佟佳欣.多壁碳纳米管对钢渣混凝土力学及耐久性能的影响[J].中南大学学报(自然科学版), 2023,54(8): 3070-3078. [百度学术]
KANG Y M,TONG J X.Effect of multi-walled carbon nanotubes on mechanical and durability of steel slag concrete[J].Journal of Central South University (Science and Technology),2023,54(8):3070-3078.(in Chinese) [百度学术]
LIU Y J,ZHONG X,REZA MOHAMMADIAN H.Role carbon nanomaterials in reinforcement of concrete and cement;A new perspective in civil engineering[J]. Alexandria Engineering Journal,2023,72:649-656. [百度学术]
陈泽辛, 周宗伯 ,余志辉, 等.碳酸钙晶须增强水泥基复合材料高温作用后的弯曲性能[J]. 功能材料, 2023, 54(9): 9100-9106. [百度学术]
CHEN Z X,ZHOU Z B,YU Z H,et al.Flexural properties of calcium carbonate whisker reinforced cementitious composites after exposed to elevated temperature[J].Journal of Functional Materials, 2023, 54(9): 9100-9106.(in Chinese) [百度学术]
肖佳, 周书会, 申闯, 等.纳米CaCO3对水泥混凝土性能影响的研究进展[J].建筑科技, 2018, 2(1): 80-84. [百度学术]
XIAO J,ZHOU S H,SHEN C,et al.Research progress on the effect of nano CaCO3 on the properties of cement concrete[J].Building Technology,2018,2(1):80-84.(in Chinese) [百度学术]
SATO T,BEAUDOIN J J.Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials[J].Advances in Cement Research, 2011, 23(1): 33-43. [百度学术]
SEKKAL W,ZAOUI A.Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs[J].Scientific Reports,2013,3:1587. [百度学术]
苗生龙, 李庆涛, 赵园园,等.高温后掺纳米CaCO3混凝土劈裂抗拉性能研究[J].三峡大学学报(自然科学版), 2020, 42(3):68-72. [百度学术]
MIAO S L,LI Q T,ZHAO Y Y,et al.Study on splitting tensile properties of nano-CaCO3 concrete after high temperature[J].Journal of China Three Gorges University (Natural Sciences),2020,42(3):68-72.(in Chinese) [百度学术]
杨国梁,李峰,张志飞,等.聚乙烯醇纤维混凝土动态断裂过程试验研究[J].硅酸盐通报,2023,42(2): 454-462. [百度学术]
YANG G L,LI F,ZHANG Z F,et al.Experimental study on dynamic fracture process of polyvinyl alcohol fiber concrete[J].Bulletin of the Chinese Ceramic Society,2023,42(2):454-462.(in Chinese) [百度学术]
谢磊,李庆华,徐世烺.纤维掺量对聚乙烯醇纤维增强水泥基复合材料动态压缩性能的影响[J].复合材料学报, 2021, 38(9):3086-3100. [百度学术]
XIE L,LI Q H,XU S L.Influence of fiber volume fraction on dynamic compressive properties of polyvinyl alcohol fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica,2021,38(9): 3086-3100.(in Chinese) [百度学术]
CHEN M, ZHONG H, WANG H, et al. Behaviour of recycled tyre polymer fibre reinforced concrete under dynamic splitting tension[J]. Cement and Concrete Composites, 2020, 114: 103764. [百度学术]
混凝土物理力学性能试验方法标准: GB/T 50081—2019[S].北京: 中国建筑工业出版社, 2019. [百度学术]
Standard for test methods of concrete physical and mechanical properties:GB/T 50081—2019[S]. Beijing:China Architecture & Building Press,2019.(in Chinese) [百度学术]
鞠杨, 李业学, 谢和平, 等. 节理岩石的应力波动与能量耗 散[J].岩石力学与工程学报, 2006, 25(12): 2426-2434. [百度学术]
JU Y, LI Y X, XIE H P, et al. Stress wave propagation and energy dissipation in jointed rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(12):2426-2434.(in Chinese) [百度学术]
王怀亮.双向应力下碾压混凝土动态力学性能[J].建筑材料学报,2015,18(5):847-851. [百度学术]
WANG H L. Dynamic properties of RCC in biaxial stress states[J]. Journal of Building Materials,2015,18(5):847-851.(in Chinese) [百度学术]
CHEN X D,GE L M,ZHOU J K,et al.Dynamic Brazilian test of concrete using split Hopkinson pressure bar[J].Materials and Structures,2016,50(1):1. [百度学术]
FENG W H,LIU F,YANG F,et al.Experimental study on dynamic split tensile properties of rubber concrete[J].Construction and Building Materials,2018,165:675-687. [百度学术]
FU Q,ZHANG Z R,ZHAO X,et al.Effect of nano calcium carbonate on hydration characteristics and microstructure of cement-based materials:a review[J]. Journal of Building Engineering,2022,50:104220. [百度学术]