摘要:本文首先找到‖x(t)‖,‖x(t-△(t))‖,‖x′(t))‖,‖x′(t-(t))‖(△(t)=△_(is)(t),(t)=_(is)(t),i=1,…,n;s=1,…,m)的关系(在过去的资料中尚未见到),这关系对研究中立型的稳定性很重要。利用这关系于V函数法,就避免(dV/dt)≤0之条件(满足这条件之V函数是难求的,在文[3]P.63中已指出),而得到适应范围广泛,判定简单的代数方法。利用这关系于参数变易法,我们得到包括文[4]定理3之结果,且对一般非线性中立型方程我们得到稳定的、渐近稳定的、及不稳定的充分条件,还得到一般滞后型方程大范围稳定的充分条件。
摘要:本文提供一种方法,使得在整批下料条材不积压、浪费,达到最节省。从理论上证明了这种新方法的合理性,此外,还探讨了与此有关的理论问题。
摘要:本文讨论了等厚各向同性板在多种载荷作用下极限分析的上下界不等式。得到了板的极限曲面的上下界限,运用它可十分简单地计算载荷在任何组合情况下的上下界限值。本文提出的方法可适用于钢筋混凝土板的极限设计。
摘要:T.V.卡曼曾建议将连续梁三弯矩方程的解答用二阶差分转换成y_x=C_1β_1~x C_2β_2~x的形式,在连续梁的设计中,这是一个概念清晰、计算简便的方法。在高层建筑中,我们用无剪力分配法所导出的三转角方程及六转角方程是与三弯矩方程相类似的方程,写成矩阵形式呈带状。在对称的高层刚架中,我们用差分将三转角方程转换成二阶常微分方程求解;在不时称的高层刚架或互联剪力墙以及剪力墙—刚架体系中,其六转角方程可用差分先转换成两个二阶常微分方程组而后又合并为四阶常微分方程来求解。用本文提出的方法进行计算,其结果表明与精确解相比误差极微。值得指出,我们将卡曼法加以发展以后所提出的这个方法,可以将一般形式(无论带宽多少)的带状矩阵线性方程组转换成为常微分方程来求解。
摘要:本文给出了匀质、各向同性、弹性半无限体表面在竖向集中突加力作用下表面竖向位移的精确解,此种解适用于泊松比为0~0.5的所有情况。本文还给出了在竖向集中谐和力作用下半无限体表面竖向位移的精确解,此问题的积分形式解是Lamb在1904年得到的。所得解答与著名的静力问题的Boussinesq解相对应。利用此解答可以评定已有近似解的适用范围。此外,本文还指出了有关结论中存在的问题。
摘要:本文叙述了用Na·β—Al_2O_3陶瓷材料为膈膜提纯金属钠的实验方法,实验结果以及结论意见。实验证明:该法是一种提纯钠的新方法,具有设备简单,操作方便,能量消耗小,产品质量高等优点。其产品质量达到优级纯化学剂的标准,而且还可以用此法制造高纯氢氧化钠。
摘要:本文对一种新型测功电机的特性从理论上进行分析探讨。根据在本机电路内接有整流——逆变装置的特点,运用交流电机的基本工作原理,对本机在测原动机的功率输出和在测被动机的功率输入时,分别导出其机械特性及其计算公式,从而在理论上对这种测功电机作出评价。
摘要:本文讨论了电流互感器产生磁误差的原因和消除此误差的方法。同时传送功率和信息是电流互感器正常工作的必要条件,也是产生磁误差的基本原因。因此,将这两个过程分离开来便是减小磁误差的基本方法。文中讨论了分离的条件,提出了等效电路和磁误差公式。
摘要:静态稳定实用判据(dP/dδ>0)仅适用于简单电力系统。对于复杂电力系统,小振荡法是研究静态稳定的一种严格方法。它是假设系统处于某一运行情况下遭受微小的扰动,列出系统的运动微分方程,然后根据其特征方程根的符号来判断系统是否稳定。电网电压的变化,对负荷消耗的有功和无功功率的大小有很大影响。因此,在静态稳定的实际计算中,考虑负荷的静态特性,十分必要。本文主要讨论考虑负荷静态特性时,利用小振荡法研究电力系统静态稳定的数学模型和计算方法。
摘要:本文根据刚体运动学与渐开线齿轮啮合的原理,分析了插齿过程中插齿刀与齿坯间可能产生让刀干涉的部位;并从复杂的几何关系中,求得了为避免干涉所必需的让刀量的计算公式。这组公式揭示了有关参数间的相互联系,便于分析各参数间的相互影响,为设计提供理论依据。最后列举了一个数值例子,以说明让刀量的计算方法。
地址: 邮政编码:410082
联系电话:0731-88822870 传真:0731-88821734 E-mail:hdxuebao@ijournals.cn
版权所有:湖南大学学报(自然科学版)中文版 ® 2025 版权所有 技术支持:北京勤云科技发展有限公司 ICP:
今日访问量: 总访问量: