2010, 37(5):45-48.
摘要:提出了一种基于小波包分析(WPA)和Elman神经网络的异步电机转子断条故障诊断方法.针对异步电机转子断条故障时定子电流出现的边频分量进行小波包分析,提取动态条件下各频带能量作为故障特征向量,削弱了负载变化及噪声对诊断准确性的影响.采用Elman神经网络对故障进行识别,并对Elman网络进行改进,在关联层增加了自反馈增益因子,提高了网络性能.以频带能量作为Elman神经网络识别故障的特征向量,建立从特征向量到电机转子断条故障之间的映射.试验结果表明:基于小波包分析提取的故障特征明显,由WPA和Elman神经网络构成的诊断系统,能有效地识别出转子断条故障,故障诊断准确率高.
2009, 36(8).
摘要:采用定子电流信号检测方法诊断三相交流电机定子绕组匝间短路故障时,会受到电网电压不对称和负载变化等因素的影响,为克服这一缺陷,提出了基于派克变换和对角递归神经网络(DRNN)的定子绕组匝间故障诊断方法.该方法根据派克变换得到三相电流派克矢量模的轨迹变化,通过频谱分析提取故障严重度特征因子.为进一步确定短路绕组的匝数,综合考虑负载、三相输入电压不平衡度的变化情况,构建基于DRNN的短路匝数诊断模型.根据此方法,构建了试验系统并进行了匝间短路试验,试验结果证明:基于Park变换和DRNN的诊断方法,不但在稳态工况下可精确确定定子绕组短路故障的严重度及匝数,而且在电机启动、负载、电压不平衡动态变化时,取得比前馈神经网络(FFNN)故障诊断模型更好的诊断结果.