2022, 49(10):51-60.
摘要:由于声呐图像受噪声污染严重,导致水下多目标分割存在精度低的问题.为此,提出一种自调整谱聚类结合熵权法进行多特征赋权的水下多目标分割技术.该技术首先通过自调整谱聚类对声呐图像的像素点进行聚类处理,使图像划分为多个独立的区域,然后根据多特征的互补性和冗余性统计每个区域的信息熵、亮度、对比度和狭长度等特征,利用熵权法对多特征进行赋权并筛选出最优的一个目标区域,再将该最优目标区域和所有区域进行多特征相似度匹配,最后根据相似度的匹配结果使用自适应阈值迭代法自动分割出所有的目标区域.实验结果表明没有对噪声干扰区域误分割,分割出的目标区域精度更高,验证了所提方法的有效性.
2022, 49(8):186-195.
摘要:传统图像去噪方法在去除声呐图像斑点噪声的同时,难以有效保留细节特征. 针对该问题,提出一种基于密度聚类与灰度变换的非下采样剪切波域图像去噪方法 . 利用非下采样剪切波变换将含噪图像分解为高频系数和低频系数,根据声呐图像中斑点噪声的分布特性,采用基于密度的噪声应用空间聚类(Density-based Spatial Clustering of Applications withNoise,DBSCAN)算法对高频系数进行处理,分离噪声信号,保留细节信息;对低频系数进行灰度变换,以增强图像对比度. 通过非下采样剪切波逆变换对处理后的高频系数和低频系数进行重构,实现图像去噪. 实验结果表明,本文方法在改善图像均方误差、峰值信噪比和结构相似度等指标上效果明显,去噪后图像的视觉效果和边缘保持能力得到较大提升. 随着噪声方差的逐渐增大,本文方法的优越性得到进一步体现,适用于具有高密度噪声的声呐图像去噪.