+高级检索
查 询 高级检索+
共找到相关记录2条
    全 选
    显示方式:|
    • 基于MeAEG-Net的异常流量检测方法研究

      2023, 50(2):63-73.

      关键词:异常流量检测;生成对抗网络;记忆增强模块;重构误差;半监督学习
      摘要 (374)HTML (0)PDF 4.83 M (564)收藏

      摘要:异常流量检测现有方法大都是基于有监督的学习,在现实生活中获取并标记异常流量数据样本是极为困难的,存在诸多限制.此外,由于网络异常数据的多样性和复杂性,各种检测方法的自适应性较差,对新出现的异常流量难以判断.针对上述问题,本文设计了一个基于生成对抗网络和记忆增强模块的半监督异常流量检测框架MeAEG-Net(Memory Augment Based on Generative Adversarial Network),通过只训练正常流量样本数据,比较生成器模块输入流量底层特征的重构误差来达到检测异常的目的.在模型中使用生成对抗网络来更好地训练生成器,生成器采用自编码器加解码器的结构来解决自编码器易受噪声影响的问题,并在自编码器子网络中添加记忆增强模块来削弱生成器模块的泛化能力,增大异常流量的重构误差.实验证明,本文提出的方法能在只学习正常流量数据样本的前提下达到很好的异常流量检测效果.

    • 基于高阶图卷积自编码器的网络流量预测

      2020, 47(4):169-174.

      关键词:流量检测;高阶图卷积;GRU自编码器;网络拥塞预测
      摘要 (576)HTML (0)PDF 0.00 Byte (0)收藏

      摘要:网络流量预测是有效保障用户QoS措施之一。当前深度学习为基础的网络算法预测中没有充分利用网络拓扑信息。为此,提出了基于高阶图卷积自编码器的网络流量预测模型。该流量预测模型基于软件定义网络(SDN)架构,利用高阶图卷积网络(GCN)获取网络拓扑中的多跳邻域之间的流量相互影响关系,采用门控递归单元(GRU)获取网络的时间相关性信息,利用自编码模型来实现无监督学习和预测。在Abilene网络上采用真实数据进行了仿真对比分析试验,结果表明,提出的方法在网络流量检测方面的MAPE值为41.56%,低于其它深度学习的方法,同时预测准确率方面也达到最优。

    上一页1下一页
    共1页2条记录 跳转到GO
出版年份

作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭