+高级检索
查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 结合加权子空间和相似度度量学习的人脸验证方法研究

      2018, 45(2):152-160.

      关键词:类内变化加权子空间相似度度量学习人脸验证
      摘要 (1549)HTML (0)PDF 1.20 M (705)收藏

      摘要:在无约束条件下,人脸表情、姿态、光照以及背景等复杂因素可能导致人脸图像的类内变化大于类间变化.针对如何降低较大的类内变化对人脸验证研究的影响,本文结合加权子空间,提出了一种带先验相似性和先验距离约束的相似度度量学习方法.首先,利用类内人脸对样本,学习带权重的类内协方差矩阵,通过加权子空间的投影,从人脸图像中获得鲁棒性的人脸特征表达;其次,利用样本对的相似性与差异性,建立了带先验相似性和先验距离约束的相似度度量学习模型,优化后的度量矩阵可以有效提高特征向量的类内鲁棒性和类间判别性;最后,利用优化的度量矩阵计算人脸对的相似度.在LFW(Labeled Faces in the Wild)数据集的实验验证了所提模型的有效性,与其它同类相似度度量学习方法相比,优化的度量矩阵更能准确地评估人脸间的相似性,并在受限训练集上取得了91.2%的识别率.

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份

作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭