+高级检索
查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 基于卷积神经网络与特征选择的医疗图像误差预测算法

      2021, 48(4):90-99.

      关键词:卷积神经网络;集成规则;多评价标准;特征选择;多元线性回归矩阵;预测
      摘要 (869)HTML (0)PDF 1.09 M (136)收藏

      摘要:针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法. 首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分类;其次,训练卷积神经网络,利用训练完成的神经网络提取不同类别医疗图像区域特征,以此为基础计算区域距离,寻找出相似度最小的区域,完成图像可疑区域定位;再次,融合多评价标准生成特征子集,从中搜索得到最优特征子集,完成可疑区域图像特征选择;最后,以选择得到的特征区域像素点作为训练样本,建立预测样本与训练样本之间的多元线性回归矩阵,实现误差预测. 实验结果表明,所提算法的集成规则适应度较高,分类性能好,区域距离计算准确率高达95%左右,特征选择的AUC值(Area Under Curve)高,且预测结果拟合度和预测耗时均优于传统算法.

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份

作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭