+高级检索
查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 基于改进SVR算法的模具棱线磨损预测方法研究

      2024, 51(8):198-210.

      关键词:模具磨损;蝗虫优化算法;支持向量回归;模具锐棱;粒子群寻优算法
      摘要 (115)HTML (10)PDF 18.74 M (204)收藏

      摘要:为研究汽车覆盖件模具棱线几何特征参数及成形工艺参数对棱线磨损的影响,实现对模具棱线磨损的精准预测,提出了一种基于改进SVR算法的模具棱线磨损预测模型.通过利用改进的拉丁超立方抽样(ILHS)方法获取模具棱线磨损有限元计算的实验样本,进而构建预测模型的输入参数集.通过耦合混沌理论、动态权重方法对蝗虫优化算法(GOA)进行改进,利用改进后的蝗虫优化算法(IGOA)对SVR算法关键参数进行寻优.构建了基于IGOA-SVR算法的模具棱线磨损预测模型,结合粒子群寻优算法(PSO)建立多目标优化模型,实现对模具棱线磨损的高精度预测以及几何特征参数和成形工艺参数优化.对比5种常规预测模型,基于IGOA-SVR算法的预测模型在采样点处的预测误差分别为8.546%、8.497%、8.473%,较GOA-SVR预测模型分别提高25.9%、26.2%、26.4%,预测精度相比于其他预测模型也有不同程度的提高.结果表明改进后的IGOA-SVR算法具有更高的精度.

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份

作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭