+高级检索
查 询 高级检索+
共找到相关记录8条
    全 选
    显示方式:|
    • 基于CT-GAN的半监督学习窃电检测方法研究

      2024, 51(6):211-222.

      关键词:窃电检测;生成对抗网络;半监督学习;Wasserstein距离;判别器
      摘要 (168)HTML (8)PDF 14.40 M (219)收藏

      摘要:针对电网公司获取有标签数据成本高、难度大,而获取的无标签数据难以训练有效窃电检测模型的问题,提出了在少量有窃电标签数据场景下基于联合训练生成对抗网络(Co-training Generative Adversarial Networks, CT-GAN)的半监督窃电检测方法.首先,探究了生成对抗网络及半监督生成对抗网络的原理与结构.其次,提出了采用Wasserstein距离取代JS(Jensen-Shannon)散度和KL(Kullback-Leibler)散度距离以解决生成对抗网络因梯度消失和模式崩溃原因导致的模型训练不稳定和生成数据质量低的问题,并构建了多判别器联合训练模型,避免了单个判别器分布误差高的问题,同时增强了GAN生成标签样本数据的能力,通过扩充标签样本数据集,提升了模型检测准确度和泛化能力.最后,采用爱尔兰电网数据集验证了该方法的准确性和有效性.

    • 基于生成对抗网络的渐进式夜视图像彩色化算法

      2023, 50(8):23-31.

      关键词:夜视图像彩色化;纹理细节预测;生成对抗网络;模糊区域修复
      摘要 (304)HTML (0)PDF 9.67 M (415)收藏

      摘要:受限于夜景光照不足等影响,夜视成像中的部分内容极易缺失或模糊,导致这部分的彩色化效果不佳.为此,本文提出了一种基于生成对抗网络的夜视图像彩色化算法, 通过对纹理细节的修复来提升图像模糊区域的彩色化效果.首先,在模糊区域修复中,利用下采样操作减少模糊图像块的比例,并用梯度调节预测器对模糊图像块周围的像素值进行预测,以此来不断增强和修复模糊的纹理细节.其次,在彩色化过程中,依托于生成的超分辨率图像和已有的先进对抗网络着色模型,通过最小化亮度和纹理等失真,来生成较为清晰的彩色图像.实验结果表明,经过模糊区域恢复和增强之后,灰度图像的PSNR平均提升0.33 dB.相比之前的夜视图像彩色化方法,本文方法可以赋予灰度夜视图像更丰富、自然的色调,更清楚地表达图像的细节,从而提高目标探测和识别效率.

    • 基于双重自注意力机制的人脸图像修复

      2023, 50(8):32-41.

      关键词:人脸图像修复;自注意力机制;生成对抗网络
      摘要 (181)HTML (0)PDF 106.48 M (467)收藏

      摘要:人脸图像修复旨在修复输入人脸图像中的缺失区域,生成令人满意的高质量修复结果.然而当存在大面积缺失时,直接修复缺失人脸图像十分困难,此时修复网络的全局上下文信息感知能力是影响修复结果的关键.鉴于此,本文提出了软硬注意力相结合的双重自注意力模块.该模块通过全局相似度计算来获得软硬两种注意力特征,之后对两种注意力特征进行自适应融合,进而提高修复网络对全局上下文信息的感知能力.此外,本文进一步提出了多尺度生成对抗网络以加强对修复结果的监督,促使修复网络生成更高质量的修复结果.实验结果表明,本文方法在定量和定性评测上均优于五种先进的对比方法.

    • 基于双层视觉及多尺度注意力融合的图像去雾

      2023, 50(2):40-51.

      关键词:图像去噪;图像去雾;生成对抗网络;注意力机制;多尺度特征融合;金字塔网络
      摘要 (457)HTML (0)PDF 99.04 M (902)收藏

      摘要:针对现有去雾算法缺乏对雾霾图像不同区域噪音浓度的关注以及远近景特征的区分问题,本文提出了一种新的生成对抗网络模型.模型中通过两个UNet3+网络实现全尺度的跳跃连接和深度监督,使用多尺度融合的方法结合不同尺度特征图中的高低级语义;而深度监督的加入可以更好地学习图像中的远近层次表示.同时在生成器结构中加入融合改进自注意力机制的多尺度金字塔特征融合模块,以便更好地保留特征图的多尺度结构信息,并且提高了对不同雾霾浓度区域的关注度.实验结果显示,在NTIRE 2020、NTIRE 2021、O-Haze数据集和Dense-Haze数据集上, 本文所提出的算法网络相比BPPNET等其他先进算法可以得到更好的视觉效果,在Dense-Haze数据集上,峰值信噪比和结构相似性指数分别达到24.82和0.769.

    • 基于MeAEG-Net的异常流量检测方法研究

      2023, 50(2):63-73.

      关键词:异常流量检测;生成对抗网络;记忆增强模块;重构误差;半监督学习
      摘要 (370)HTML (0)PDF 4.83 M (562)收藏

      摘要:异常流量检测现有方法大都是基于有监督的学习,在现实生活中获取并标记异常流量数据样本是极为困难的,存在诸多限制.此外,由于网络异常数据的多样性和复杂性,各种检测方法的自适应性较差,对新出现的异常流量难以判断.针对上述问题,本文设计了一个基于生成对抗网络和记忆增强模块的半监督异常流量检测框架MeAEG-Net(Memory Augment Based on Generative Adversarial Network),通过只训练正常流量样本数据,比较生成器模块输入流量底层特征的重构误差来达到检测异常的目的.在模型中使用生成对抗网络来更好地训练生成器,生成器采用自编码器加解码器的结构来解决自编码器易受噪声影响的问题,并在自编码器子网络中添加记忆增强模块来削弱生成器模块的泛化能力,增大异常流量的重构误差.实验证明,本文提出的方法能在只学习正常流量数据样本的前提下达到很好的异常流量检测效果.

    • HCGAN:一种基于GAN的高容量信息隐藏算法

      2022, 49(4):35-46.

      关键词:信息隐藏;深度学习;生成对抗网络;自编码器;卷积神经网络
      摘要 (589)HTML (0)PDF 3.23 M (511)收藏

      摘要:针对现有信息隐藏算法存在隐写容量低、信息提取困难以及安全性差等问题,本文提出了一种基于生成对抗网络的高容量信息隐藏算法(High Capacity Information Hiding Algorithm Based on GAN,HCGAN).在秘密信息嵌入方面,使用基于Im-Residual结构的编码器将秘密信息嵌入载体图像中,避免了秘密信息嵌入时由卷积层提取特征导致的信息损失.在秘密信息提取方面,使用基于稠密结构的解码器从含秘图像中提取出秘密信息,利用特征复用来增加秘密信息的提取率.在抗隐写分析方面,利用基于隐写分析的鉴别器与基于Im-Residual结构的编码器进行对抗训练,以提高含秘图像的抗隐写分析能力.实验表明,经过对抗训练后,HCGAN在2 bpp嵌入率下比WOW和S-UNIWARD在0.4 bpp嵌入率下具有更低的隐写分析检测率.

    • 基于情感分析和GAN的股票价格预测方法

      2022, 49(10):111-118.

      关键词:股票价格预测;情感分析;卷积神经网络;生成对抗网络
      摘要 (989)HTML (0)PDF 762.57 K (535)收藏

      摘要:股票价格具有非平稳性和波动性特点,且投资者容易受自身情感影响,投资决策行为具有非理性特征,因此股票价格难以预测.针对预测股票价格的卷积神经网络情感分析方法存在文本标记分布不平衡问题,本文提出一种基于情感分析和生成对抗网络的股票价格预测方法.首先,建立金融领域情感词典库;然后,使用基于词典的情感分析方法计算金融文本数据的情感极性和投资者每天的总体情感指数;最后,利用生成对抗网络对股市波动进行预测,其中生成器生成股票序列数据,而判别器采用卷积神经网络对生成数据和真实数据进行区分.该方法能动态地更新股票价格预测结果且误差较小.

    • 基于MD-CGAN的脑部肿瘤图像生成方法研究

      2022, 49(8):179-185.

      关键词:深度学习;磁共振图像;样本扩充;生成对抗网络
      摘要 (536)HTML (0)PDF 3.58 M (536)收藏

      摘要:深度学习已广泛用于脑部磁共振(MR)图像分析中,但脑部肿瘤MR图像样本不足会严重影响深度学习模型的性能 . 提出基于多鉴别器循环一致性生成对抗网络(MD-CGAN)的样本生成方法 . 利用所提出的 MD-CGAN 生成脑部肿瘤病理区域图像,将生成的脑部肿瘤病理区域图像覆盖脑部正常图像子区域,合成得到脑部肿瘤MR图像. MD-CGAN引入的双对抗损失避免了模型崩塌问题的产生,引入的循环一致性损失函数可以保证脑部正常子区域图像生成脑部肿瘤病理区域图像,从而使得MD-CGAN生成的图像具有高质量和多样性. 以FID值作为评价指标,利用本文提出的MD-CGAN与近几年较经典的生成网络生成脑部肿瘤病理区域图像并计算FID值. 实验结果表明,本文所提出网络的FID值比SAGAN、StyleGAN和Style?GAN2的值分别低26.43%、21.91%、12.78%. 为进一步验证本文方法的有效性,利用生成的脑部肿瘤图像扩充样本,并依托扩充前后的样本集进行脑部肿瘤分割网络训练. 实验表明,样本扩充后的分割网络性能更优异. 本文方法生成的脑部肿瘤MR图像质量高、多样性强,这些样本可代替真实样本参与模型的训练,从而有效解决脑部肿瘤MR图像训练样本不足的问题.

    上一页1下一页
    共1页8条记录 跳转到GO

作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭