+高级检索
查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 异构分布式环境中的并行离群点检测算法

      2020, 47(10):100-110.

      关键词:离群点检测;异构分布式;网格;数据划分
      摘要 (683)HTML (0)PDF 989.04 K (428)收藏

      摘要:离群点检测是数据挖掘领域研究的热点之一,主要目的是识别出数据集中异常但有价值的数据点. 随着数据规模不断扩大,使得处理海量数据的效率降低,随即引入分布式算法. 目前现有的分布式算法大都用于解决同构分布式的处理环境,但在实际应用中,由于参与分布式计算的处理机配置的差异,现有的分布式离群点检测算法不能很好地适用于异构分布式环境. 针对上述问题,本文提出一种面向异构分布式环境的离群点检测算法. 首先提出基于网格的动态数据划分方法(Gird-based Dynamic Data Partitioning,GDDP),充分利用各处理机的计算资源,同时根据数据点的空间位置信息进行数据划分,可有效减少网络通信. 其次基于GDDP算法,提出了异构分布式环境中并行的离群点检测算法(GDDP-based Outlier Detection Algorithm,GODA). 该算法包括2个阶段:在每个处理机本地,按照索引中数据点的顺序进行过滤,通过2次扫描得到离群点候选集;判断候选离群点需要进行网络通信的处理机,使用较低网络开销得出全局离群点. 最后,通过大量实验验证了本文提出的GDDP和GODA算法的有效性.

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份

作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭