+高级检索
查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 基于多尺寸特征叠加的SAR舰船目标检测方法

      2021, 48(4):80-89.

      关键词:SAR图像;目标检测;多尺度特征;深度神经网络
      摘要 (356)HTML (0)PDF 2.93 M (117)收藏

      摘要:针对SAR图像中舰船目标的检测问题,单纯基于深度学习的图像处理技术难以达到检测准确性和实时性要求. SAR图像中目标尺寸较小,且易受噪声、光斑干扰,传统方法难以提取精细特征并克服复杂条件下的背景干扰. 针对以上问题,设计基于YOLOv3检测框架的端到端检测模型,借鉴了残差模块结构来避免网络退化问题. 同时结合深层与浅层的不同尺寸特征图检测,使用目标基础特征提取网络参数来避免重复训练初始化过程. 针对SAR 图像中海上舰船成像小目标的特点改进优化了神经网络结构,实现SAR海面广域舰船目标识别分类算法,并对检测模型进行轻量化压缩处理. 构建SAR图像舰船目标数据集并进行了多次目标检测识别分类实验,体现了提出的检测方法在复杂场景下有可靠的抗干扰能力和准确的目标检测识别性能.

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份

作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭