+高级检索
查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 基于混合生成网络的软件系统异常状态评估

      2022, 49(4):78-88.

      关键词:软件系统;状态评估;长短期记忆网络;变分自动编码器;异常检测;耦合度
      摘要 (858)HTML (0)PDF 1.41 M (425)收藏

      摘要:针对现有软件系统异常状态评估方法过度依赖数据标注、对时序数据的时间依赖性关注较低和系统异常状态难以量化等问题,提出一种基于混合生成网络的软件系统异常状态评估方法.首先,通过对长短期记忆网络(long short-term memory network, LSTM)与变分自动编码器(variational auto-encoder, VAE)的融合,设计一种LSTM-VAE混合生成网络,并以该网络为基础构建基于LSTM-VAE混合生成网络的系统异常状态检测模型,由LSTM对系统数据的时序特征进行提取并由VAE对系统数据的分布进行建模.然后,由LSTM-VAE异常状态检测模型处理系统关键特征参数,获取系统关键特征参数的异常度量值.最后,利用耦合度方法对传统的线性加权和方法进行优化,通过加权耦合度优化方法计算得到软件系统异常状态的量化值,从而实现对软件系统的异常状态评估.实验结果表明,本文模型对软件系统的异常时序数据具有较好的检测能力,其对系统异常状态的评估结果更为合理、有效.

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份

作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭