2023, 50(12):168-177.
摘要:模型预测控制设计参数选择显著影响被控系统性能,目前基于专家经验的主流参数整定方法会出现控制器鲁棒性差、计算成本高等缺点.为了解决上述问题,提出一种基于模糊C均值-极限学习机-裸骨粒子群(Fuzzy C-means-Extreme Learning Machine-Bare Bones Particle Swarm, FCM-ELM-BBPS)的参数整定算法.通过模糊C均值算法(Fuzzy C-means, FCM)聚类进行数据预处理,将被控系统复杂数据根据自身特征进行聚类,以降低神经网络的训练误差,提高预测精度;针对每一类特征数据,利用极限学习机(Extreme Learning Machine, ELM)建立预测控制参数与性能指标的映射关系模型,并进一步获得参数整定规则;采用裸骨粒子群(Bare Bones Particle Swarm, BBPS)优化算法进行预测控制参数整定,通过采用高斯分布来更新粒子位置,加快目标函数的收敛速度,从而有效地减少参数寻优时间;分别进行仿真和水箱系统实验验证,证明了提出算法的有效性.实验结果表明,本文提出的算法与现有方法相比,更具有优越性,其中整定时间减少了34.84%,同时在调整时间等时域性能指标上提升了43.98%.
2008, 35(12).
摘要:分析了电动轮自卸车传动控制系统的特点,提出了电动轮自卸车自抗扰传动控制,设计了基于遗传算法参数整定的自抗扰传动控制系统.仿真结果表明,自抗扰控制器完全能够满足系统控制要求,且比同样采用遗传算法参数整定的PID控制具有更强的抗扰能力和鲁棒性.
2007, 34(1).
摘要:讨论了154T电动轮自卸车牵引励磁控制的基本问题;分析了传统PID控制器的不足和基于遗传算法PID控制器的优势;论述了遗传算法的原理、基本问题和实现步骤.研究了电动轮自卸车的牵引特性和牵引励磁控制系统的结构,根据设计,该系统被控对象可简化为二阶系统,而控制器采用基于遗传算法的PID控制.用MATLAB对PID参数整定进行了仿真,以考察利用遗传算法的进化能力优化PID的效果.仿真结果表明,经过遗传算法优化的PID控制器具有较高的精度和较强的适应性,能获得满意的控制效果.