+高级检索
查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 基于图卷积和全局对齐策略的图分类网络

      2021, 48(6):96-104.

      关键词:图表示学习;图分类;图神经网络;深度学习
      摘要 (622)HTML (0)PDF 892.25 K (36)收藏

      摘要:受限于图数据拓扑结构的不规则性,以及图结点的无序性和规模多变性,现有图分类网络往往对结点嵌入向量采取简单聚合或排序等方式来构建图级别的表示向量,这会导致特征过度压缩以及特征平移等问题. 针对这些问题,提出基于全局对齐策略的图卷积网络,通过构建子图特征近似分布将图表示特征向量做全局对齐,在避免过度压缩和特征平移、有效提高下游分类网络对于特征信息挖掘效率的同时,又利用子图特征的分布信息,进一步学习图数据之间内在的结构相似性,从而提升整体网络对于图分类任务的推理能力. 在多个图分类数据集上的实验结果表明,采用全局对齐的图卷积网络相较于其他网络模型有2%~6%左右分类精度的稳定提升,消融实验和超参数敏感性分析实验也进一步证实了全局对齐策略的有效性和鲁棒性.

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份

作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭