2021, 48(6):96-104.
摘要:受限于图数据拓扑结构的不规则性,以及图结点的无序性和规模多变性,现有图分类网络往往对结点嵌入向量采取简单聚合或排序等方式来构建图级别的表示向量,这会导致特征过度压缩以及特征平移等问题. 针对这些问题,提出基于全局对齐策略的图卷积网络,通过构建子图特征近似分布将图表示特征向量做全局对齐,在避免过度压缩和特征平移、有效提高下游分类网络对于特征信息挖掘效率的同时,又利用子图特征的分布信息,进一步学习图数据之间内在的结构相似性,从而提升整体网络对于图分类任务的推理能力. 在多个图分类数据集上的实验结果表明,采用全局对齐的图卷积网络相较于其他网络模型有2%~6%左右分类精度的稳定提升,消融实验和超参数敏感性分析实验也进一步证实了全局对齐策略的有效性和鲁棒性.