+高级检索
查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 基于双能γ射线的煤炭灰分测量模型及其应用

      2014, 41(5):99-105.

      关键词:煤;灰分;双能γ射线;模糊神经网络;化学组分
      摘要 (962)HTML (0)PDF 0.00 Byte (0)收藏

      摘要:针对传统双能γ射线测量法检测误差较大以及灰分成分对检测精度影响大的问题,建立了基于模糊神经网络的双能γ射线的新型煤炭灰分测量模型,并应用该模型对煤炭灰分进行了在线检测试验,实例分析了两种双能γ射线测量方法在煤炭灰分检测中的应用情况.试验结果表明:相比于传统双能γ射线测量法3%的平均相对误差,本文提出的基于模糊神经网络的双能γ射线的灰分测量法的相对误差小于1%,且其测量结果不受灰分组成成分的影响.同时,利用X-射线荧光光谱分析法(XRF)分析了灰分的化学组分与其含量的关系,研究了灰分化学组分对双能γ透射法检测结果的影响.结果表明:煤炭中Fe,Ca,Mg和S元素的含量会影响双能γ射线透射法的检测精度,其成分含量波动越大,检测结果误差也越大.

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份

作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭