2022, 49(12):183-191.
摘要:为了提高电力系统的安全性和稳定性,解决传统时频变换方法在电能扰动分析中不能准确分离提取扰动信号的缺陷,提出一种基于多重匹配同步压缩变换(Multiple Matching Synchrosqueezing Transform,MMSST)的电能扰动分析方法. 首先,利用MMSST将含扰动的信号分解为一组本征模态函数分量(Intrinsic Mode Functions,IMF);然后,对每个IMF分量进行希尔伯特变换(Hilbert Transform, HT),从而获得各个分量的瞬时频率和瞬时幅值,实现扰动信号的检测与分类. 仿真和实测实验结果表明,与经验模态分解(Empirical Mode Decomposition, EMD)算法相比,MMSST可以准确地分离提取电压扰动信号中的各个扰动分量,可以实现各个扰动分量的瞬时频率和幅值的准确提取,并且具有较强的鲁棒性.
2011, 38(11):54-59.
摘要:针对局部均值分解(Local Mean Decomposition,LMD)中乘积函数(Product Function,PF)分量的瞬时频率计算问题,引入了一种新的信号瞬时频率计算方法.该方法基于分段波形,先将信号分成若干个全波段(full wave),然后以一组递增的反正弦函数定义每个全波段的瞬时相位,进而得到信号的瞬时频率.由该方法得到的瞬时频率理论上是正的、稳定的并且能够确保信号局部特征信息的完整.应用该方法计算了仿真信号和实际齿轮故障振动信号的瞬时频率,并与其他方法求得的瞬时频率进行了对比.结果表明,本文方法非常适合求取信号的瞬时频率.