2020, 47(2):85-91.
摘要:在合成孔径雷达图像舰船目标检测中,由于背景复杂多变,传统的基于人工特征的目标检测方法效果较差. 基于深度学习中的单阶段目标检测算法RetinaNet,结合合成孔径雷达图像本身特征信息较少的特点,采用了多特征层融合的思想,改进了网络特征提取能力,提出了相适应的损失函数的计算方法. 采用SAR图像舰船目标检测数据集(SSDD)对网络进行训练,并通过样本增强和迁移学习的方法提升算法的鲁棒性和收敛速度. 通过实验与其他基于深度学习的目标检测算法所得结果进行比较,结果表明本算法具有更高的检测精度.